People | Locations | Statistics |
---|---|---|
Grohsjean, Alexander |
| |
Falmagne, G. |
| |
Erice, C. |
| |
Hernandez, A. M. Vargas |
| |
Leiton, A. G. Stahl |
| |
Lipka, K. |
| |
Pantaleo, F. |
| |
Torterotot, L. |
| |
Savina, M. |
| |
Cerri, O. |
| |
Jung, A. W. |
| |
Chiarito, B. |
| |
Sahin, M. O. |
| |
Strong, G. |
| |
Saradhy, R. |
| |
Joshi, B. M. |
| |
Kaynak, B. |
| |
Barrera, C. Baldenegro |
| |
Longo, Egidio |
| |
Kolberg, Ted |
| |
Ferguson, Thomas |
| |
Leverington, Blake |
| |
Haase, Fabian |
| |
Heath, Helen F. |
| |
Kokkas, Panagiotis |
|
Piozzi, Antonella
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (23/23 displayed)
- 2023Rice husk ash as a green feedstock for the extraction of nano-silica and its application in the synthesis of an efficient solid biocatalyst
- 2020Enhanced performance of Candida rugosa lipase immobilized onto alkyl chain modified-magnetic nanocompositescitations
- 2017Taurine grafting and collagen adsorption on PLLA films improve human primary chondrocyte adhesion and growthcitations
- 2016Flexible aliphatic poly(isocyanurate-oxazolidone) resins based on poly(ethylene glycol) diglycidyl ether and 4,4′-methylene dicyclohexyl diisocyanatecitations
- 2015Self-Assembly of catecholic moiety-containing cationic random acrylic copolymerscitations
- 2015Antimicrobial and antioxidant amphiphilic random copolymers to address medical device-centered infectionscitations
- 2014Biomimetic Polyurethanescitations
- 2014Partially sulfonated ethylene-vinyl alcohol copolymer as new substrate for 3,4-ethylenedioxythiophene vapor phase polymerizationcitations
- 2013Editorial of the special issue antimicrobial polymerscitations
- 2012A new approach for the preparation of hydrophilic poly(L-lactide) porous scaffold for tissue engineering by using lamellar single crystalscitations
- 2012Lipase Immobilization on Differently Functionalized Vinyl-Based Amphiphilic Polymers: Influence of Phase Segregation on the Enzyme Hydrolytic Activitycitations
- 2012Synthesis of biomimetic segmented polyurethanes as antifouling biomaterialscitations
- 2010Novel intrinsically antimicrobial polymers to control biofilm formation on medical devices
- 2010Synthesis and properties of block poly(ether-ester)s based on poly(ethylene oxide) and various hydrophobic segmentscitations
- 2010Polyurethane anionomers containing metal ions with antimicrobial properties: Thermal, mechanical and biological characterizationcitations
- 2009Antibiofilm properties of functionalized polyurethanes adsorbed with metal ions (Ag+, Cu2+, Zn2+, Al3+ and Fe3+)
- 2007Synthesis, characterization, and in vitro activity of antibiotic releasing polyurethanes to prevent bacterial resistancecitations
- 2007Staphylococcus epidermidis biofilm growth on polyurethanes is inhibited by the synergistic action of Dispersin B and cefamandole nafate.
- 2005Inhibition of Candida growth and biofilm formation on polyurethanes by fluconazole adsorption.citations
- 2004Inhibition of bacterial biofilm formation on polymer surfaces by a natural antimicrobial agent
- 2004Inhibition of biofilm formation in Gram-positive bacteria by a natural antimicrobial agent
- 2001CATALITIC ACTIVITY OF IMMOBILIZED FUMARASEcitations
- 2000Sulfation and preliminary biological evaluation of ethylene-vinyl alcohol copolymerscitations
Places of action
Organizations | Location | People |
---|
article
Enhanced performance of Candida rugosa lipase immobilized onto alkyl chain modified-magnetic nanocomposites
Abstract
Lipase-immobilized nanomaterials with high activity and stable reusability would have a great impact in different fields. However, developing such materials has proven to be challenging. Herein, polymer (pAcDED)-coated magnetic nanoparticles (MNPs) displaying long alkyl chains, either octyl (C8) or hexadecyl (C16), have been prepared and used for immobilization of Candida rugosa lipase. The aim of the study was to develop magnetic supports able to bind enzyme via interfacial activation thus to stabilized the lipase open conformation. Among the developed nanosupports, the one endowed with the longest alkyl chains (MNPs-pAcDED-C16) provided the best efficiencies of the immobilized enzyme (70% vs. tributyrin and 130% vs. ethyl butyrate). Such results suggest both enzyme adsorption in open conformation and a change of enzyme specificity during immobilization. The MNPs-pAcDED-C16 system also showed better resistance to temperature inactivation in the 25–70 °C temperature range compared to free lipase and good reusability (4 consecutive cycles). The overall performances together with the convenience in the recovery offered by magnetic separation indicate our surface-modified MNPs as efficient and environmentally compatible materials for lipase immobilization. © 2019