People | Locations | Statistics |
---|---|---|
Grohsjean, Alexander |
| |
Falmagne, G. |
| |
Erice, C. |
| |
Hernandez, A. M. Vargas |
| |
Leiton, A. G. Stahl |
| |
Lipka, K. |
| |
Pantaleo, F. |
| |
Torterotot, L. |
| |
Savina, M. |
| |
Cerri, O. |
| |
Jung, A. W. |
| |
Chiarito, B. |
| |
Sahin, M. O. |
| |
Strong, G. |
| |
Saradhy, R. |
| |
Joshi, B. M. |
| |
Kaynak, B. |
| |
Barrera, C. Baldenegro |
| |
Longo, Egidio |
| |
Kolberg, Ted |
| |
Ferguson, Thomas |
| |
Leverington, Blake |
| |
Haase, Fabian |
| |
Heath, Helen F. |
| |
Kokkas, Panagiotis |
|
Piozzi, Antonella
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (23/23 displayed)
- 2023Rice husk ash as a green feedstock for the extraction of nano-silica and its application in the synthesis of an efficient solid biocatalyst
- 2020Enhanced performance of Candida rugosa lipase immobilized onto alkyl chain modified-magnetic nanocompositescitations
- 2017Taurine grafting and collagen adsorption on PLLA films improve human primary chondrocyte adhesion and growthcitations
- 2016Flexible aliphatic poly(isocyanurate-oxazolidone) resins based on poly(ethylene glycol) diglycidyl ether and 4,4′-methylene dicyclohexyl diisocyanatecitations
- 2015Self-Assembly of catecholic moiety-containing cationic random acrylic copolymerscitations
- 2015Antimicrobial and antioxidant amphiphilic random copolymers to address medical device-centered infectionscitations
- 2014Biomimetic Polyurethanescitations
- 2014Partially sulfonated ethylene-vinyl alcohol copolymer as new substrate for 3,4-ethylenedioxythiophene vapor phase polymerizationcitations
- 2013Editorial of the special issue antimicrobial polymerscitations
- 2012A new approach for the preparation of hydrophilic poly(L-lactide) porous scaffold for tissue engineering by using lamellar single crystalscitations
- 2012Lipase Immobilization on Differently Functionalized Vinyl-Based Amphiphilic Polymers: Influence of Phase Segregation on the Enzyme Hydrolytic Activitycitations
- 2012Synthesis of biomimetic segmented polyurethanes as antifouling biomaterialscitations
- 2010Novel intrinsically antimicrobial polymers to control biofilm formation on medical devices
- 2010Synthesis and properties of block poly(ether-ester)s based on poly(ethylene oxide) and various hydrophobic segmentscitations
- 2010Polyurethane anionomers containing metal ions with antimicrobial properties: Thermal, mechanical and biological characterizationcitations
- 2009Antibiofilm properties of functionalized polyurethanes adsorbed with metal ions (Ag+, Cu2+, Zn2+, Al3+ and Fe3+)
- 2007Synthesis, characterization, and in vitro activity of antibiotic releasing polyurethanes to prevent bacterial resistancecitations
- 2007Staphylococcus epidermidis biofilm growth on polyurethanes is inhibited by the synergistic action of Dispersin B and cefamandole nafate.
- 2005Inhibition of Candida growth and biofilm formation on polyurethanes by fluconazole adsorption.citations
- 2004Inhibition of bacterial biofilm formation on polymer surfaces by a natural antimicrobial agent
- 2004Inhibition of biofilm formation in Gram-positive bacteria by a natural antimicrobial agent
- 2001CATALITIC ACTIVITY OF IMMOBILIZED FUMARASEcitations
- 2000Sulfation and preliminary biological evaluation of ethylene-vinyl alcohol copolymerscitations
Places of action
Organizations | Location | People |
---|
article
Synthesis and properties of block poly(ether-ester)s based on poly(ethylene oxide) and various hydrophobic segments
Abstract
To obtain biodegradable amphiphilic block polymers for biomedical applications, a series of poly(ether-ester)s based on poly(ethylene oxide) and various hydrophobic/hydrophilic segment ratios were synthesized by the solution polymerization technique. The polyesters were characterized using (1)H NMR spectroscopy, elemental analysis, gel permeation chromatography, differential scanning calorimetry, thermogravimetric analysis and compression stress-strain measurements. The composition of the poly(ether-ester)s agreed with the feed ratio. A study of the degree of phase segregation in the polymers evidenced that microphase mixing increases with the presence in the hydrophobic segments of polar groups able to establish interactions with the poly(ethylene oxide). This phase mixing increased the thermal stability of the acidic poly(ether-ester)s. Nanospheres for drug delivery with an average diameter of 50 nm were obtained by employing the acidic poly(ether-ester) showing less microphase segregation, while a scaffold structure with a homogeneous and highly interconnected porosity and an average pore size of approximately 15 mu m for tissue engineering was prepared using the more hydrophobic copolymer not possessing functional groups. Compression mechanical measurements carried out on the scaffold showed that the more hydrophobic copolymer was suitable for tissue engineering applications. In order to obtain polymers employable both in drug delivery and in tissue engineering a series of block poly(ether-ester)s showing various phase segregations were synthesized by varying the hydrophobic/hydrophilic segment ratio. (C) 2010 Society of Chemical Industry