People | Locations | Statistics |
---|---|---|
Ferrari, A. |
| |
Schimpf, Christian |
| |
Dunser, M. |
| |
Thomas, Eric |
| |
Gecse, Zoltan |
| |
Tsrunchev, Peter |
| |
Della Ricca, Giuseppe |
| |
Cios, Grzegorz |
| |
Hohlmann, Marcus |
| |
Dudarev, A. |
| |
Mascagna, V. |
| |
Santimaria, Marco |
| |
Poudyal, Nabin |
| |
Piozzi, Antonella |
| |
Mørtsell, Eva Anne |
| |
Jin, S. |
| |
Noel, Cédric |
| |
Fino, Paolo |
| |
Mailley, Pascal |
| |
Meyer, Ernst |
| |
Zhang, Qi |
| |
Pfattner, Raphael | Brussels |
|
Kooi, Bart J. |
| |
Babuji, Adara |
| |
Pauporte, Thierry |
|
Van Petegem, S.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
Places of action
article
A new criterion for elastoplastic transition in nanomaterials: Application to size and composite effects on Cu-Nb nanocomposite wires.
Abstract
International audience ; Nanocomposite wires composed of a multi-scale Cu matrix embedding Nb nanotubes are cyclically deformed in tension under synchrotron radiation in order to follow the X-ray peak profiles (position and width) during mechanical testing. The evolution of elastic strains vs. applied stress suggests the presence of phase-specific elasto-plastic regimes. The nature of the elasto-plastic transition is uncovered by the "tangent modulus" analysis and correlated to the microstructure of the Cu channels and the Nb nanotubes. Finally, a new criterion for the determination of the macroyield stress is given as the stress to which the macroscopic work hardening, θa = dσa/dε0, becomes smaller than one third of the macroscopic elastic modulus.