People | Locations | Statistics |
---|---|---|
Ferrari, A. |
| |
Schimpf, Christian |
| |
Dunser, M. |
| |
Thomas, Eric |
| |
Gecse, Zoltan |
| |
Tsrunchev, Peter |
| |
Della Ricca, Giuseppe |
| |
Cios, Grzegorz |
| |
Hohlmann, Marcus |
| |
Dudarev, A. |
| |
Mascagna, V. |
| |
Santimaria, Marco |
| |
Poudyal, Nabin |
| |
Piozzi, Antonella |
| |
Mørtsell, Eva Anne |
| |
Jin, S. |
| |
Noel, Cédric |
| |
Fino, Paolo |
| |
Mailley, Pascal |
| |
Meyer, Ernst |
| |
Zhang, Qi |
| |
Pfattner, Raphael | Brussels |
|
Kooi, Bart J. |
| |
Babuji, Adara |
| |
Pauporte, Thierry |
|
Kellner, Michael
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2023Phase-Field Simulation of the Microstructure Evolution in the Eutectic Alloy NiAl-31Cr-3Mo
- 2022Role of orientation relationship for the formation of morphology and preferred orientation in NiAl-(Cr,Mo) during directional solidificationcitations
- 2017Photopolymerizable monomer formulations for nanoporous proton conducting membranes
- 2017Photopolymerization of crosslinked proton conducting membranes
Places of action
conferencepaper
Photopolymerization of crosslinked proton conducting membranes
Abstract
Several monomers and crosslinker in a broad range of concentrations in water and 1-Methyl-2-pyrrolidone (NMP) respectively were screened for their mechanical properties, water uptake and conductivity in porous membranes by photo polymerization with a polar photo initiator. As conductive polymer, primarily poly(2-acrylamido-2-methylpropane sulfonic acid) (PAMPS) and poly(2-sulfoethyl methacrylate) (PSEM) respectively as well as polymers of phosphonic acid containing monomers or newly synthesized monomers were used. The conductive monomers were crosslinked with varying hydrophobic and hydrophilic multifunctional monomers like N,N'-methylene bisacrylamide (MBA), 2-Propenoic acid, 2-methyl-, 1,1'-(1,10-decanediyl) ester (D3MA) or polyethyleneglycol diacrylates with two varying chainlengths (PEG-DA700, PEG-DA330). The advantage of several different building blocks with known characteristics is the possibility to tune the polymer to special needs of an application. For example, some polymer compositions have good conductivity at lower temperatures whereas other polymers develop better properties at elevated temperatures. The research leading to these results has received funding from the European Community's FP7- NMP Programme, under the Project Acronym MultiPlat and with Grant Agreement: N 228943 and the Austrian Federal Ministry of Science and Research. We thank 3M for providing us with samples of the PP membrane. 1/ Hamrock, S.J. and M.A. Yandrasits, Proton Exchange Membranes for Fuel Cell Applications. 2006. 46(3): p. 219 - 244. 2/ Hoogers, G., Membranes and Ionomers, in Fuel Cell Technology Handbook G. Hoogers, Editor. 2002, CRC Press. p. 360