People | Locations | Statistics |
---|---|---|
Ferrari, A. |
| |
Schimpf, Christian |
| |
Dunser, M. |
| |
Thomas, Eric |
| |
Gecse, Zoltan |
| |
Tsrunchev, Peter |
| |
Della Ricca, Giuseppe |
| |
Cios, Grzegorz |
| |
Hohlmann, Marcus |
| |
Dudarev, A. |
| |
Mascagna, V. |
| |
Santimaria, Marco |
| |
Poudyal, Nabin |
| |
Piozzi, Antonella |
| |
Mørtsell, Eva Anne |
| |
Jin, S. |
| |
Noel, Cédric |
| |
Fino, Paolo |
| |
Mailley, Pascal |
| |
Meyer, Ernst |
| |
Zhang, Qi |
| |
Pfattner, Raphael | Brussels |
|
Kooi, Bart J. |
| |
Babuji, Adara |
| |
Pauporte, Thierry |
|
Calin, M.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
- 2019Added functions of leather surface by Ag/TiO2 nanoparticles use and some considerations on their cytotoxicity
- 2017Powder metallurgical processing of low modulus ß-type Ti-45Nb to bulk and macro-porous compactscitations
- 2017Fatigue properties of a new generation ß-type Ti-Nb alloy for osteosynthesis with an industrial standard surface conditioncitations
Places of action
conferencepaper
Added functions of leather surface by Ag/TiO2 nanoparticles use and some considerations on their cytotoxicity
Abstract
Content: Nanoparticles showed a huge potential for new properties development in many economic sectors like electronics, medicine, textile, waste water treatment etc. The modification of surface functionality by using low concentrations of nanomaterials opens the possibility of lowering the ecological impact of chemical materials based on volatile organic compounds. The objectives of our research were related to the use of commercial nanoparticles based on Ag and TiO2 with average particle size of 8 nm for leather surface functionalization and the investigation of the cytotoxicological impact of nanoparticle concentrations on human skin cells. The practical implications of the approach consist of multifunctional leather surface development, leather durability and comfort increase by generating antimicrobial and self-cleaning properties. The relation between leather functionality and the cytotoxicity concentration limit of nanomaterials was the hypothesis of our research. The main procedures for leather surface covering followed the classical recipes based on surface spraying with film forming composites with nanoparticle content. The optimized technology was evaluated by leather surface analyses regarding the antimicrobial (SR EN ISO 20645) and self-cleaning properties under UV and visible light exposure as compared to leather surface covered without nanoparticles. The cytotoxicity tests were performed by incubation of keratinocytes (Human immortalized keratinocytes-HaCaT) with different concentrations of nanoparticles for 48 hours and measurement of cell viability by MTT (3-[4,5-dimethylthiazol- 2-yl]-2,5-diphenyltetrazolium bromide) assay protocol. Other tests were devoted to leather wearing simulation in order to estimate the potential transfer of nanoparticles on human skin and the health and safety impact. These simulations were based on rubbing test (SR EN ISO 11640) followed by scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM/EDX) analyses and by leachability tests (SR EN ISO ...