Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People
693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025
Kalteremidou, Kalliopi-ArtemiOspanova, Alyiya

Azam, Siraj

  • Google
  • 1
  • 3
  • 2

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2025Critical Role of Rubber Functionalities on the Mechanical and Electrical Responses of Carbon Nanotube-Based Electroactive Rubber Composites2citations

Places of action

Chart of shared publication
Yun, Jongwan
1 / 1 shared
Park, Sang-Shin
1 / 1 shared
Alam, Md Najib
1 / 1 shared
Chart of publication period
2025

Co-Authors (by relevance)

  • Yun, Jongwan
  • Park, Sang-Shin
  • Alam, Md Najib
OrganizationsLocationPeople

document

Critical Role of Rubber Functionalities on the Mechanical and Electrical Responses of Carbon Nanotube-Based Electroactive Rubber Composites

  • Yun, Jongwan
  • Park, Sang-Shin
  • Alam, Md Najib
  • Azam, Siraj

Abstract

Carbon nanomaterials, particularly carbon nanotubes (CNTs), are widely used as reinforcing fillers in rubber composites for advanced mechanical and electrical applications. However, the influence of rubber functionality and its interactions with CNTs remains underexplored. This study investigates electroactive elastomeric composites fabricated with CNTs in two common diene rubbers: natural rubber (NR) and acrylonitrile-butadiene rubber (NBR), each with distinct functionalities. For NR-based composites containing 2 vol% CNTs, mechanical properties, such as elastic modulus (2.24 MPa), tensile strength (12.48 MPa), and fracture toughness (26.92 MJ/m3), show significant improvements of 125%, 215%, and 164%, respectively, compared to unfilled rubber. Similarly, for NBR-based composites, the elastic modulus (5.46 MPa), tensile strength (13.47 MPa), and fracture toughness (82.89 MJ/m3) increase by 94%, 22%, and 65%, respectively, over the unfilled system. Although NBR-based composites exhibit higher mechanical properties, NR systems show more significant improvements, suggesting stronger chemical bonding between NR chains and CNTs, as evidenced by dynamic mechanical, X-ray diffraction, thermogravimetric, and thermodynamic analyses. The NBR-based composite at 1 vol% CNT content exhibits 261% higher piezoresistive strain sensitivity (GF = 65 at 0% ≤ Δε ≤ 200%) compared to the NR-based composite (GF = 18 at 0% ≤ Δε ≤ 200%). The highest gauge factor of 39,125 (1000% ≤ Δε ≤ 1220) was achieved in NBR-based composites with 1 vol% CNT content. However, 1.5 vol% CNT content in NBR provides better strain sensitivity and linearity than other composites. Additionally, NBR demonstrates superior electromechanical actuation properties, with 1317% higher actuation displacement and 276% higher electromechanical pressure compared to NR at an applied electric field of 12 kV. Due to the stronger chemical bonding between the rubber and CNT, NR-based composites are more suitable for dynamic mechanical applications. In contrast, NBR-based ...

Topics

  • Carbon
  • x-ray diffraction
  • nanotube
  • strength
  • composite
  • tensile strength
  • rubber
  • fracture toughness
  • elastomer