| People | Locations | Statistics |
|---|---|---|
| Naji, M. |
| |
| Motta, Antonella |
| |
| Aletan, Dirar |
| |
| Mohamed, Tarek |
| |
| Ertürk, Emre |
| |
| Taccardi, Nicola |
| |
| Kononenko, Denys |
| |
| Petrov, R. H. | Madrid |
|
| Alshaaer, Mazen | Brussels |
|
| Bih, L. |
| |
| Casati, R. |
| |
| Muller, Hermance |
| |
| Kočí, Jan | Prague |
|
| Šuljagić, Marija |
| |
| Kalteremidou, Kalliopi-Artemi | Brussels |
|
| Azam, Siraj |
| |
| Ospanova, Alyiya |
| |
| Blanpain, Bart |
| |
| Ali, M. A. |
| |
| Popa, V. |
| |
| Rančić, M. |
| |
| Ollier, Nadège |
| |
| Azevedo, Nuno Monteiro |
| |
| Landes, Michael |
| |
| Rignanese, Gian-Marco |
|
Kalteremidou, Kalliopi-Artemi
Vrije Universiteit Brussel
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2025Combined computational-experimental investigation of residual stresses and pre-cracking in mode I behaviour of thick adhesively bonded GFRP composite jointscitations
- 2025Investigation of the Sensitivity of Acoustic Emission to the Differentiation Between Mode I, II, and III Fracture in Bulk Polymer Materialscitations
- 2024An experimental and analytical study of mode I fracture and crack kinking in thick adhesive jointscitations
- 2024Investigating the mode-I failure behaviour of thick adhesive joints using a coupled computational/experimental approach
- 2023NDT of composite components for automotive applications
- 2023The impact of multiaxiality on the static and fatigue fracture of carbon/epoxy polymer composites
- 2022FRACTURE OF STRUCTURAL ADHESIVE UNDER PURE MODE III LOADING CONDITIONS: EXPERIMENTAL STUDY AND CHALLENGES
- 2022ACOUSTIC EMISSION FOR IDENTIFICATION OF THE DOMINANT STRESS COMPONENT IN POLYMER COMPOSITES AT EARLY LOADS,
- 2021On the use of acoustic emission to identify the dominant stress/strain component in carbon/epoxy composite materialscitations
- 2020Effect of multiaxiality, stacking sequence and number of off-axis layers on the mechanical response and damage sequence of carbon/epoxy composite laminates under static loadingcitations
- 2020An integrated NDT approach for damage assessment of CFRP composites under complex static and fatigue loads
- 2020Failure characterisation of CF/epoxy V-shape components using digital image correlation and acoustic emission analysescitations
- 2018Exploration of specimen geometry and tab configuration for tensile testing exploiting the potential of 3D printing freeform shape continuous carbon fibre-reinforced nylon matrix compositescitations
- 2018Multiaxial damage characterization of carbon/epoxy angle-ply laminates under static tension by combining in situ microscopy with acoustic emissioncitations
Places of action
| Organizations | Location | People |
|---|
article
Exploration of specimen geometry and tab configuration for tensile testing exploiting the potential of 3D printing freeform shape continuous carbon fibre-reinforced nylon matrix composites
Abstract
Now that the design freedom of printing of continuous fibre-reinforced polymers has become available, the recommendations on the specimens’ geometry and tab configuration to experimentally determine the elastic properties of conventionally manufactured composites are reviewed. To explore this design freedom, tensile tests for five types of specimen geometry and tabs were investigated. Continuous carbon fibre-reinforced Nylon specimens were printed using a Mark Two commercial 3D printer. Dumbbell shape specimens according to ASTM D638-14 with proposed radius dimension, 76 mm, and with enlarged radius, 244 mm to reduce stress concentrations at the fillet and avoid crack initiation were tested. Rectangular specimens according to ASTM D3039/3039M-14 outperform other specimen geometries. The effectiveness of printed end tabs was investigated. Even although 3D printing offers facilities for printing end tabs, there is no convincing evidence that the performance of specimen gripping is better and the printing is more time consuming and expensive. Rectangular specimens with paper end tabs work best and that is why they were used in the further characterization. The effect of alternating Nylon layers was also investigated and shows drastic reduction in stiffness. In a next step, the tensile properties of a set of eight rectangular specimens with 0° unidirectional layup were characterized and compared with conventionally manufactured composites. The tensile properties for different fibre orientations were also determined. The effect of fibre location and microstructure was studied bringing important insights to the promising 3D printing but also revealing challenges to overcome (e.g. inhomogeneity in fibre distribution) to be able to fully explore the design freedom.