| People | Locations | Statistics |
|---|---|---|
| Naji, M. |
| |
| Motta, Antonella |
| |
| Aletan, Dirar |
| |
| Mohamed, Tarek |
| |
| Ertürk, Emre |
| |
| Taccardi, Nicola |
| |
| Kononenko, Denys |
| |
| Petrov, R. H. | Madrid |
|
| Alshaaer, Mazen | Brussels |
|
| Bih, L. |
| |
| Casati, R. |
| |
| Muller, Hermance |
| |
| Kočí, Jan | Prague |
|
| Šuljagić, Marija |
| |
| Kalteremidou, Kalliopi-Artemi | Brussels |
|
| Azam, Siraj |
| |
| Ospanova, Alyiya |
| |
| Blanpain, Bart |
| |
| Ali, M. A. |
| |
| Popa, V. |
| |
| Rančić, M. |
| |
| Ollier, Nadège |
| |
| Azevedo, Nuno Monteiro |
| |
| Landes, Michael |
| |
| Rignanese, Gian-Marco |
|
Kalteremidou, Kalliopi-Artemi
Vrije Universiteit Brussel
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2025Combined computational-experimental investigation of residual stresses and pre-cracking in mode I behaviour of thick adhesively bonded GFRP composite jointscitations
- 2025Investigation of the Sensitivity of Acoustic Emission to the Differentiation Between Mode I, II, and III Fracture in Bulk Polymer Materialscitations
- 2024An experimental and analytical study of mode I fracture and crack kinking in thick adhesive jointscitations
- 2024Investigating the mode-I failure behaviour of thick adhesive joints using a coupled computational/experimental approach
- 2023NDT of composite components for automotive applications
- 2023The impact of multiaxiality on the static and fatigue fracture of carbon/epoxy polymer composites
- 2022FRACTURE OF STRUCTURAL ADHESIVE UNDER PURE MODE III LOADING CONDITIONS: EXPERIMENTAL STUDY AND CHALLENGES
- 2022ACOUSTIC EMISSION FOR IDENTIFICATION OF THE DOMINANT STRESS COMPONENT IN POLYMER COMPOSITES AT EARLY LOADS,
- 2021On the use of acoustic emission to identify the dominant stress/strain component in carbon/epoxy composite materialscitations
- 2020Effect of multiaxiality, stacking sequence and number of off-axis layers on the mechanical response and damage sequence of carbon/epoxy composite laminates under static loadingcitations
- 2020An integrated NDT approach for damage assessment of CFRP composites under complex static and fatigue loads
- 2020Failure characterisation of CF/epoxy V-shape components using digital image correlation and acoustic emission analysescitations
- 2018Exploration of specimen geometry and tab configuration for tensile testing exploiting the potential of 3D printing freeform shape continuous carbon fibre-reinforced nylon matrix compositescitations
- 2018Multiaxial damage characterization of carbon/epoxy angle-ply laminates under static tension by combining in situ microscopy with acoustic emissioncitations
Places of action
| Organizations | Location | People |
|---|
article
Effect of multiaxiality, stacking sequence and number of off-axis layers on the mechanical response and damage sequence of carbon/epoxy composite laminates under static loading
Abstract
The mechanical response and damage sequence of composite materials are nowadays still a topic of ongoing research. However, many parameters influencing their overall behavior are still not thoroughly taken into consideration. The effect of multiaxial stresses, the distinction between balanced and unbalanced configurations and the influence of the number of off-axis layers are just a few to mention. Experimental data regarding the effect of all these parameters on the damage progression in composites is of great importance, since it is proven that commonly used failure criteria, neglecting the occurring damage mechanisms, cannot always predict the material response. In this work, a study of the influence of all these parameters is attempted, by testing carbon/epoxy laminates with different off-axis angles to account for different multiaxiality. Both balanced and unbalanced laminates are taken into account, considering the lack of experimental evidence in literature regarding the latter case, and significant differences between the two lay-ups are reported for the first time. Finally, the influence of the number of the off-axis layers on the mechanical response in conjunction with the previous parameters is also studied through elaborate damage observations.