Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Meux, E.

  • Google
  • 1
  • 4
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Propeline: a green alternative to Ethaline for electrometallurgy of precious metals ? ; Propeline: a green alternative to Ethaline for electrometallurgy of precious metals ?: The economical viability of WEEE (Waste from Electrical and Electronic Equipment) recycling is mainly based on the recovery of copper and precious metals. In this context, we aim at developing a green process for the recovery of silver, palladium, and gold from rich printed-circuit boards (cell phones, labtops…). The recovery will be conducted after the necessary stages of non-metallic materials removal and the beneficiation of less precious metals such as copper and nickel, carried out by Terra Nova Development (TND), our industrial partner.The process envisaged is based on electrometallurgy in “Deep eutectic solvents” (DES), a technology that can be considered as green alternative to conventional hydrometallurgy for precious metals recovery. Indeed, DES have a low reactivity and volatility, making them far less noxious to environment than corrosive liquors employed in conventional processes (cyanides, aqua regia). In particular, the DES named Ethaline (choline chloride-ethylene glycol mixture) has been widely used in electrometallurgy, because of its acceptable viscosity and the presence of substantial Cl- concentration leading to a high solubility of numerous metallic compounds. However, if choline chloride (ChCl) can be considered as a “green” reactant, ethylene glycol (EG) is known to be harmful to men and animals in case of repeated exposure or inhalation periods. Comparable DES with a lower toxic nature than Ethaline can be obtained by replacing EG by other glycols e.g. propylene glycol (PG), widely used in cosmetics and pharmacology, with costs comparable to those of EG: The resulting DES is named Propeline. We will present the potential of this less known DES in the recovery of precious metals. Because the change in the hydrogen bond donor with PG leads to a modification of the DES bulk properties, the first part of this work deals with the determination of Propeline density, viscosity, conductivity and electrochemical stability, which are properties of interest for electrochemical processes. The influence of water content on these properties was thoroughly investigated. Values of the above property parameters are compared to those obtained with Ethaline as a reference DES. In a second part, we will present the performances of Propeline for the electrochemical leaching of Ag, Pd and Au. The performance of Propeline in leaching was evaluated in ambient atmosphere, i.e. in the presence of water at percent levels. Leaching efficiencies could be studied after thorough development of analytical procedures dedicated to elemental analysis e.g. ICP-EOS in DES. The speciation of leached metals was determined by use of cross-linked analysis, namely UV-vis, and EXAFS/XANES spectroscopic techniques, in both cases with comparison with those in Ethaline. Systems (leached metal species-DES) were then thoroughly studied by electrochemical methods. In particular, diffusion coefficients of the solvated metal species were determined by electrochemical transient and stationary techniques, in the aim of leached metal recovery by electrochemical deposition.citations

Places of action

Chart of shared publication
Bertoloni, Calogera
1 / 6 shared
Lapicque, François
1 / 25 shared
Michel, S.
1 / 12 shared
Legeai, Sophie
1 / 20 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Bertoloni, Calogera
  • Lapicque, François
  • Michel, S.
  • Legeai, Sophie
OrganizationsLocationPeople