People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kennedy, David
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2023JET exhaust detritiation system replacement—design, commissioning, and operationcitations
- 2020Buckling optimization of blended composite structures using lamination parameterscitations
- 2018The effects of composite laminate stiffness and loading on stress resultant concentration factor around a holecitations
- 2013Improving tribological properties of cast Al-Si alloys through application of wear-resistant thermal spray coatingscitations
- 2006Shibboleth for Real
Places of action
Organizations | Location | People |
---|
article
Buckling optimization of blended composite structures using lamination parameters
Abstract
In this paper, a new lamination parameter based method is proposed for the layup optimization of built-up composite laminates with ply drop-offs. The optimization process is divided into two stages. In the first stage, the multilevel optimization feature of the exact strip software VICONOPT MLO is extended to use the lamination parameters and laminate thicknesses of each component panel as design variables to minimize the weight of the whole structure subject to buckling and lamination parameter constraints. For the second stage, instead of using the common heuristic optimization methods, a novel dummy layerwise branch and bound (DLBB) method is proposed to search the manufacturable stacking sequences to find those needed to achieve a blended structure based on the use of 0°, 90°, +45° and −45° plies and having lamination parameters equivalent to those determined in the first stage. The DLBB method carries out a logical search to circumvent the stochastic search feature of heuristic methods for the determination of stacking sequences. This two-stage method is an extension of a previous highly efficient two-stage method for a single laminate (Liu et al., 2019) [1]. The effectiveness of the presented method is demonstrated through the optimization of a benchmark wing box.