Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ludwig, Andreas

  • Google
  • 6
  • 40
  • 142

RWTH Aachen University

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (6/6 displayed)

  • 2024Assessment of URANS-Type Turbulent Flow Modeling of a Single Port Submerged Entry Nozzle (SEN) for Thin Slab Continuous Casting (TSC) Process5citations
  • 2023Microgravity studies of solidification patterns in model transparent alloys onboard the International Space Station5citations
  • 2022Investigation of effect of electrode polarity on electrochemistry and magnetohydrodynamics using tertiary current distribution in electroslag remelting process6citations
  • 2022Experimental and numerical investigations of arc plasma expansion in an industrial vacuum arc remelting (VAR) process10citations
  • 2020A Parametric Study of the Vacuum Arc Remelting (VAR) Process: Effects of Arc Radius, Side-Arcing, and Gas Cooling45citations
  • 2009The angiotensin-calcineurin-NFAT pathway mediates stretch-induced up-regulation of matrix metalloproteinases-2/-9 in atrial myocytes.71citations

Places of action

Chart of shared publication
Bohacek, Jan
2 / 2 shared
Hackl, Gernot
1 / 3 shared
Nitzl, Gerald
1 / 1 shared
Watzinger, Josef
1 / 3 shared
Wu, Menghuai
4 / 5 shared
Kharicha, Abdellah
4 / 9 shared
Tang, Yong
1 / 2 shared
Karimi-Sibaki, Ebrahim
4 / 6 shared
Vakhrushev, Alexander
2 / 8 shared
Plapp, M.
1 / 4 shared
Mcfadden, S.
1 / 2 shared
Bottin-Rousseau, S.
1 / 12 shared
Akamatsu, S.
1 / 8 shared
Şerefoğlu, M.
1 / 5 shared
Mota, F.
1 / 1 shared
Sillekens, W.
1 / 3 shared
Witusiewicz, V.
1 / 2 shared
Hecht, U.
1 / 11 shared
Mogeritsch, J.
1 / 1 shared
Zimmermann, G.
1 / 20 shared
Sturz, L.
1 / 14 shared
Bergeon, N.
1 / 24 shared
Vakhrushev, Dmitrii
1 / 1 shared
Boháček, Jan
2 / 6 shared
Peyha, Mario
1 / 2 shared
Preiss, Bernhard
1 / 1 shared
Saygili, E.
1 / 1 shared
Weis, Joachim
1 / 2 shared
Gemein, C.
1 / 1 shared
Mg, Andrzejewski
1 / 1 shared
Mischke, K.
1 / 1 shared
Schotten, Ulrich
1 / 1 shared
Rassaf, T.
1 / 1 shared
Rh, Schwinger
1 / 1 shared
Krüttgen, A.
1 / 1 shared
Weber, Christian
1 / 2 shared
Kelm, Malte
1 / 1 shared
Rana, Obaida
1 / 1 shared
Meyer, Christian
1 / 2 shared
Schauerte, P.
1 / 1 shared
Chart of publication period
2024
2023
2022
2020
2009

Co-Authors (by relevance)

  • Bohacek, Jan
  • Hackl, Gernot
  • Nitzl, Gerald
  • Watzinger, Josef
  • Wu, Menghuai
  • Kharicha, Abdellah
  • Tang, Yong
  • Karimi-Sibaki, Ebrahim
  • Vakhrushev, Alexander
  • Plapp, M.
  • Mcfadden, S.
  • Bottin-Rousseau, S.
  • Akamatsu, S.
  • Şerefoğlu, M.
  • Mota, F.
  • Sillekens, W.
  • Witusiewicz, V.
  • Hecht, U.
  • Mogeritsch, J.
  • Zimmermann, G.
  • Sturz, L.
  • Bergeon, N.
  • Vakhrushev, Dmitrii
  • Boháček, Jan
  • Peyha, Mario
  • Preiss, Bernhard
  • Saygili, E.
  • Weis, Joachim
  • Gemein, C.
  • Mg, Andrzejewski
  • Mischke, K.
  • Schotten, Ulrich
  • Rassaf, T.
  • Rh, Schwinger
  • Krüttgen, A.
  • Weber, Christian
  • Kelm, Malte
  • Rana, Obaida
  • Meyer, Christian
  • Schauerte, P.
OrganizationsLocationPeople

article

A Parametric Study of the Vacuum Arc Remelting (VAR) Process: Effects of Arc Radius, Side-Arcing, and Gas Cooling

  • Boháček, Jan
  • Wu, Menghuai
  • Kharicha, Abdellah
  • Ludwig, Andreas
  • Karimi-Sibaki, Ebrahim
Abstract

Main modeling challenges for vacuum arc remelting (VAR) are briefly highlighted concerning various involving phenomena during the process such as formation and movement of cathode spots on the surface of electrode, the vacuum plasma, side-arcing, the thermal radiation in the vacuum region, magnetohydrodynamics (MHD) in the molten pool, melting of the electrode, and solidification of the ingot. A numerical model is proposed to investigate the influence of several decisive parameters such as arc mode (diffusive or constricted), amount of side-arcing, and gas cooling of shrinkage gap at mold-ingot interface on the solidification behavior of a Titanium-based (Ti-6Al-4V) VAR ingot. The electromagnetic and thermal fields are solved in the entire system including the electrode, vacuum plasma, ingot, and mold. The flow field in the molten pool and the solidification pool profile are computed. The depth of molten pool decreases as the radius of arc increases. With the decreasing amount of side-arcing, the depth of the molten pool increases. Furthermore, gas cooling fairly improves the internal quality of ingot (shallow pool depth) without affecting hydrodynamics in the molten pool. Modeling results are validated against an experiment.

Topics
  • impedance spectroscopy
  • surface
  • experiment
  • simulation
  • melt
  • titanium
  • solidification