People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Wiśniewski, Paweł
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (26/26 displayed)
- 2021Influence of an aluminizing process on the microstructure and tensile strength of the nickel superalloy IN 718 produced by the Selective Laser Meltingcitations
- 2020Investigation of the Properties of S i C based Ceramic Slurries and Shell Moulds Cooling using Thermal Imaging Camera
- 2020Molding Binder Influence on the Porosity and Gas Permeability of Ceramic Casting Moldscitations
- 2020Analysis of Microstructure and Properties of a Ti–AlN Composite Produced by Selective Laser Meltingcitations
- 2020Microstructure and Mechanical Properties of Austenitic 316L Steel Samples Obtained by Selective Laser Melting
- 2018Determination of loamy resources impact on granulation of ceramic proppants and their propertiescitations
- 2017Assesment of Infrared Drying Time of Ceramic Shell Molds with use of Thermal Imaging Camera
- 2017Evaluation of Cooling Time of SiC Ceramic Mold Using Thermal Imaging Camera
- 2017Detection of the Surface Structure Defects in Ceramic Shell Molds Using a Thermovisual Camera
- 2017Effect of adding water-based binders on the technological properties of ceramic slurries based on silicon carbide citations
- 2017Microstructure characterization of ceramic shell molds
- 2017Manufacture of Ceramic Shell molds; Monitoring the Processes with the Use of a Thermo-visual Camera
- 2017Influence of Duplex Surface Treatment on the High-Cycle Fatigue Resistance of the IN 713C Nickel Superalloy
- 2016Investigation of the Basic Properties of Ceramic Proppants in Raw State Obtained by the Method of Mechanical Granulationcitations
- 2016Selecting key parameters of the green pellets and lightweight ceramic proppants for enhanced shale gas exploitationcitations
- 2016Investigation of key parameters influence on properties of the green pellets and lightweight ceramic proppants obtained by mechanical granulation method citations
- 2016Characterization and evaluation properties of ceramic proppants used in the extraction of the unconventional hydrocarbons
- 2016Rheological properties of alumina ceramic slurries for ceramic shell-mould fabricationcitations
- 2016Optimizing the Lightweight Ceramic Proppants Propertiescitations
- 2016Technological Properties of Ceramic Slurries Based on Silicon Carbide with Poly(vinyl alcohol) Addition for Shell Moluds Fabrication in Precision Casting Processcitations
- 2016Experimental ceramic proppants characterization in the process of shale gas extraction
- 2015Studies of the properties of green ceramic proppants obtained by spray drying method
- 2015Study of deflocculation of white clay for obtaining ceramic proppants fabrication in spray dryer
- 2015Influence of deflocculant addition on rheological properties of the slurries based on bauxite
- 2004Effect of glass transition temperature of polymeric binders on properties ceramic materialscitations
- 2001Vinyl Acetate Copolymers in Die Pressing of Aluminacitations
Places of action
Organizations | Location | People |
---|
document
Manufacture of Ceramic Shell molds; Monitoring the Processes with the Use of a Thermo-visual Camera
Abstract
The paper presents the results of studies on the manufacture of multilayered ceramic shell molds in particular the drying and heat treatment processes, including the selection of the proper slurries. The molds are in particular intended for precision casting especially in the aircraft industry. The experiments were conducted in two stages. The first stage included the selection of the optimum technological parameters of the casting slurries suitable for the first (inner) and structural layers of the mold so that the entire surfaces of the wax mold models were covered uniformly with the successive layers (the first layer and 5 structural layers) of specified thickness and porosity. In the next stage the ceramic shell mold was subjected to heat treatment at a temperature of 170 °C with the aim to remove the molten wax. The manufacturing process and the heat treatment were monitored with a thermo-visual camera, which permitted visualizing the way in which the surfaces of the individual layers are drying depending on their geometry, and detecting the possible surface defects (such as cracks and voids) invisible with the necked eye.