People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Engberg, Sara Lena Josefin
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (29/29 displayed)
- 2023Advances in the one-step synthesis of 2D and 3D sulfide materials grown by pulsed laser deposition assisted by a sulfur thermal crackercitations
- 2022Silver-substituted (Ag1-xCux)2ZnSnS4 solar cells from aprotic molecular inkscitations
- 2022Tuning the band gap of CdS in CZTS/CdS solar cells
- 2022The effect of soft-annealing on sputtered Cu2ZnSnS4 thin-film solar cellscitations
- 2022A facile strategy for the growth of high-quality tungsten disulfide crystals mediated by oxygen-deficient oxide precursorscitations
- 2022Solution-processed CZTS and its n-layers
- 2020Energy band alignment at the heterointerface between CdS and Ag-alloyed CZTScitations
- 2020Energy band alignment at the heterointerface between CdS and Ag-alloyed CZTScitations
- 2020Monolithic thin-film chalcogenide–silicon tandem solar cells enabled by a diffusion barriercitations
- 2020Persistent Double-Layer Formation in Kesterite Solar Cells: A Critical Reviewcitations
- 2020Persistent Double-Layer Formation in Kesterite Solar Cells: A Critical Reviewcitations
- 2019Thin films of CZTS and CZTO for solar cells produced by pulsed laser deposition
- 2019Thin films of CZTS and CZTO for solar cells produced by pulsed laser deposition
- 2018Liquid phase assisted grain growth in Cu2ZnSnS4 nanoparticle thin films by alkali element incorporationcitations
- 2017Investigation of Cu 2 ZnSnS 4 nanoparticles for thin-film solar cell applicationscitations
- 2017The effect of dopants on grain growth and PL in CZTS nanoparticle thin films for solar cell applications
- 2017Na-assisted grain growth in CZTS nanoparticle thin films for solar cell applications
- 2017Spray-coated ligand-free Cu2ZnSnS4 nanoparticle thin films
- 2017Investigation of Cu2ZnSnS4 nanoparticles for thin-film solar cell applicationscitations
- 2017Spray-coated Cu2ZnSnS4 thin films for large-scale photovoltaic applications
- 2016High frequency pulse anodising of magnetron sputtered Al–Zr and Al–Ti Coatingscitations
- 2016Cu2ZnSnS4 Nanoparticle Absorber Layers for Thin-Film Solar Cells
- 2016Synthesis of ligand-free CZTS nanoparticles via a facile hot injection routecitations
- 2015Optimized Packing Density of Large CZTS Nanoparticles Synthesized by Hot-injection for Thin Film Solar Cells.
- 2015Large CZTS Nanoparticles Synthesized by Hot-Injection for Thin Film Solar Cells.
- 2015Synthesis of large CZTSe nanoparticles through a two-step hot-injection methodcitations
- 2014Appearance of anodised aluminium: Effect of alloy composition and prior surface finishcitations
- 2014Annealing in sulfur of CZTS nanoparticles deposited through doctor blading
- 2014Study of Grain Growth of CZTS Nanoparticles Annealed in Sulfur Atmosphere
Places of action
Organizations | Location | People |
---|
thesis
Cu2ZnSnS4 Nanoparticle Absorber Layers for Thin-Film Solar Cells
Abstract
In the search for a new material for solar cells, the quaternary chalcogenide copper zinc tin sulde (Cu2ZnSnS4 or CZTS) is one potential candidate. It is abundant, environmentally-friendly, inexpensive, and presently it has a mediocre record effciency of around 10% with potential to reach above 15%. This thesis is a part of the work done in making the prospects of solutionprocessed CZTS more fruitful. In addition to an inexpensive material, a cheap production pathway is also required for the material to be suitable for solar cells of the future. Solution-processing comprises either a nanoparticle ink or a precursor ink that can be printed, sprayed, or in another way coated on a substrate appropriate for mass production. For CZTS, the power conversion effciency of these device are lagging behind the vacuum processed CZTS thin films, as certain challenges arise with solution-processing. The conversion of the as-deposited amorphous or nanocrystalline thin films into an almost"monocrystalline" material is not effective under the current sulfurization conditions. In this work, means have been taken to improve the properties of the nanoparticles in order to make them easier to handle and better for the succeeding sulfurization step. For this objective, two main routes have been pursued. The first route was related to synthesizing larger nanoparticles than the typical outcome of the synthesis route used, as these could be a better starting material for grain growth. This was achieved by utilizing a two-step hot-injection method for synthesizing nanoparticles; it adds an extra step, but the desired particle sizes and particle size distributions were obtained. The second track concerned developing a type of nanoparticles without any hydrocarbon surface coatings, as these organic ligands have been challenging to remove in the succeeding annealing steps. By choosing suitable solvents and precursors, organic ligand-free nanoparticles were successfully synthesized in a facile one-step process. These particles further introduced the advantage that they could be dispersed in simple solvents such as water and ethanol. To understand what happens to the as-synthesized material when it is heated, a range of analyses were carried out with some slightly uncommon techniques for the field of CZTS: thermogravimetric analysis coupled with mass spectrometry. This characterization resulted in knowledge of how solvents and ligands evaporate or decompose as a function of temperature. The nal part of the work has been related to fabricating a thin-film absorber layer from the CZTS nanoparticles. It is a common obstacle that grain growth in these CZTS nanoparticle thin films is severely restricted, as the absorber layer remains very porous or an organic layer is present at the back interface, which was also seen here. Sodium in the form of NaCl salt was for the firrst time dissolved directly in the nanoparticle ink - again with focus on environmental friendliness and a low cost. The addition of sodium had a significant impact, and it greatly enhanced both structural and optoelectronic properties of the fillms.