People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Norby, Poul
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (34/34 displayed)
- 2023Thin film and bulk morphology of PI-PS-PMMA miktoarm star terpolymers with both weakly and strongly segregated arm pairs
- 2023Time and space resolved operando synchrotron X-ray and Neutron diffraction study of NMC811/Si–Gr 5 Ah pouch cellscitations
- 2019Electrochemical stability of (La,Sr)CoO3-δ in (La,Sr)CoO3-δ/(Ce, Gd)O2-δ heterostructurescitations
- 2019Improved cycling stability in high-capacity Li-rich vanadium containing disordered rock salt oxyfluoride cathodescitations
- 2019Hydrothermal Synthesis, Characterization, and Sintering Behavior of Core-Shell Particles: A Principle Study on Lanthanum Strontium Cobaltite Coated with Nanosized Gadolinium Doped Ceriacitations
- 2019Hydrothermal Synthesis, Characterization, and Sintering Behavior of Core-Shell Particles: A Principle Study on Lanthanum Strontium Cobaltite Coated with Nanosized Gadolinium Doped Ceriacitations
- 2018Intercalation of lithium into disordered graphite in a working batterycitations
- 2018Hydrothermal Synthesis, Characterization, and Sintering Behavior of Core-Shell Particles: A Principle Study on Lanthanum Strontium Cobaltite Coated with Nanosized Gadolinium Doped Ceriacitations
- 2017Investigation of a Spinel-forming Cu-Mn Foam as an Oxygen Electrode Contact Material in a Solid Oxide Cell Single Repeating Unitcitations
- 2016Electron microscopy investigations of changes in morphology and conductivity of LiFePO4/C electrodescitations
- 2016Comprehensive analysis of TEM methods for LiFePO 4 /FePO 4 phase mapping: spectroscopic techniques (EFTEM, STEM-EELS) and STEM diffraction techniques (ACOM-TEM)citations
- 2016In situ X-ray powder diffraction studies of the synthesis of graphene oxide and formation of reduced graphene oxidecitations
- 2016Comprehensive analysis of TEM methods for LiFePO4/FePO4 phase mapping: spectroscopic techniques (EFTEM, STEM-EELS) and STEM diffraction techniques (ACOM-TEM)citations
- 2016Electron microscopy investigations of changes in morphology and conductivity of LiFePO 4 /C electrodescitations
- 2016Nanocomposite YSZ-NiO Particles with Tailored Structure Synthesized in a Two-Stage Continuous Hydrothermal Flow Reactor
- 2015In Situ Studies of Fe4+ Stability in β-Li3Fe2(PO4)3 Cathodes for Li Ion Batteriescitations
- 2015Size of oxide vacancies in fluorite and perovskite structured oxidescitations
- 2015In Situ High Resolution Synchrotron X-Ray Powder Diffraction Studies of Lithium Batteries
- 2015Capillary based Li-air batteries for in situ synchrotron X-ray powder diffraction studiescitations
- 2014Ionic conductivity and the formation of cubic CaH 2 in the LiBH 4 -Ca(BH 4 ) 2 compositecitations
- 2014Degradation Studies on LiFePO 4 cathode
- 2014Ionic conductivity and the formation of cubic CaH2 in the LiBH4-Ca(BH4)2 compositecitations
- 2014Degradation Studies on LiFePO4 cathode
- 2014In Situ Synchrotron XRD on a Capillary Li-O2 Battery Cell
- 2014Temperature- and Pressure-Induced Changes in the Crystal Structure of Sr(NH3)8Cl2citations
- 2013Structure and Magnetic Properties of Cu 3 Ni 2 SbO 6 and Cu 3 Co 2 SbO 6 Delafossites with Honeycomb Latticescitations
- 2013Structure and Magnetic Properties of Cu3Ni2SbO6 and Cu3Co2SbO6 Delafossites with Honeycomb Latticescitations
- 2013Capillary-based micro-battery cell for in situ X-ray powder diffraction studies of working batteries: a study of the initial intercalation and deintercalation of lithium into graphitecitations
- 2012Subsolidus phase relations of the SrO–WO3–CuO system at 800 °C in aircitations
- 2012Subsolidus phase relations of the SrO–WO 3 –CuO system at 800 °C in aircitations
- 2010Structural and microstructural changes during anion exchange of CoAl layered double hydroxides: an in situ X-ray powder diffraction studycitations
- 2009A Structural Study of Stacking Disorder in the Decomposition Oxide of MgAl Layered Double Hydroxide: A DIFFaX plus Analysiscitations
- 2009Conductivity and water uptake of Sr-4(Sr2Nb2)O-11 center dot nH(2)O and Sr-4(Sr2Ta2)O-11 center dot nH(2)Ocitations
- 2009Temperature dependant X-ray diffraction study of PrSr3Co1.5Fe1.5O10-d; n=3 Ruddlesden-Popper phasecitations
Places of action
Organizations | Location | People |
---|
conferencepaper
In Situ High Resolution Synchrotron X-Ray Powder Diffraction Studies of Lithium Batteries
Abstract
Lithium ion battery technology is the heart in operating modern technology devices such as mobile phones and laptops. However, as our society is moving towards the utilization of sustainable energy sources, batteries can be foreseen to become an even more important part of the energy infrastructure. They will be used not only for transportation, but also for medium and short term storage as well as for frequency stabilization in intermittent grid scale energy sources such as solar and wind. Thus, the development of new cheaper and safer battery materials with high energy and power density is very important for a successful worldwide energy transition. The understanding of structural and compositional changes of bulk electrodes in batteries is undoubtedly important. However, it is often transport of electrons and ions across and through interfaces [1] (e.g., between lithiated and delithiated domains) which limits the obtainable power density and battery life time. A challenging and important task is to obtain in situ information about the formation and evolution of interfaces in an operating battery system. This work addresses these challenges and for this purpose we have developed a special microcapillary battery cell allowing diffraction information to be obtained from only the active material during battery operation [2]. High resolution synchrotron x-ray powder diffraction technique has been undertaken to obtain detailed structural and compositional information during lithiation/delithiation of commercial LiFePO4 materials [3]. We report results from the first in situ time resolved high resolution powder diffraction experiments at beamline ID22/31 at the European Synchrotron Radiation Facility, ESRF. We follow the structural changes during charge of commercial LiFePO4 based battery materials using the Rietveld method. Conscientious Rietveld analysis shows slight but continuous deviation of lattice parameters from those of the fully stoichiometric end members LiFePO4 and FePO4 indicating a subsequent variation of stoichiometry during cathode delithiation. The application of an intermittent current pulses during charge using GITT technique shows an oscillation of lattice constants that correlates with the applied current and electrochemical relaxation sequence and may indicate the existence of metastable non-stoichiometric states. References [1] R. Malik, F. Zhou, and G. Ceder, Nat. Mater., 10, 587 (2011). [2] R. E. Johnsen, and P. Norby, J. Appl. Crystallogr., 46, 1537 (2013). [3] A. K. Padhi, K. S. Nanjundaswamy, and J. B. Goodenough, J. Electrochem. Soc., 144, 1188 (1997).