Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Tonnoir, Antoine

  • Google
  • 2
  • 4
  • 0

Institut National des Sciences Appliquées de Rouen

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023Electromagnetic bench based on ETSA antennas for civil engineering materials tomographycitations
  • 2015Transparent conditions for the diffaction of elastic waves in anisotropic mediacitations

Places of action

Chart of shared publication
Cousin, Théau
1 / 1 shared
Gout, Christian
1 / 1 shared
Fauchard, Cyrille
1 / 6 shared
Charbonnier, Pierre
1 / 3 shared
Chart of publication period
2023
2015

Co-Authors (by relevance)

  • Cousin, Théau
  • Gout, Christian
  • Fauchard, Cyrille
  • Charbonnier, Pierre
OrganizationsLocationPeople

thesis

Transparent conditions for the diffaction of elastic waves in anisotropic media

  • Tonnoir, Antoine
Abstract

This thesis is motivated by the numerical simulation of Non Destructive Testing by ultrasonic waves. It aims at designing a method to compute by Finite Element (EF) the diffraction of elastic waves in time-harmonic regime by a bounded defect in an anisotropic plate. The goal is to take into account an infinite plate and to restrict the FE calculations to a bounded area. This point is difficult due to the anisotropy and, in particular, methods such as perfectly matched layers fail.In this thesis, we have mainly considered two-dimensional cases that enabled us to implement the main ingredients of a method designed for the three-dimensional case of the plate. The first part deals with the diffractionproblem in an infinite strip. The classical approach consists in writing transparent conditions by matching on a boundary the displacement and the axial stress using a modal expansion in the safe part of the plate, and the FE representation in the perturbed area. We have shown the interest of imposing these matching conditions on two separated boundaries, by introducing an overlap between the modal domain and the FE domain. Thus, we can take advantage of the bi-orthogonality relations valid for general anisotropy, and also improve the rate of convergence of iterative methods of resolution. In the second part, that represents the main part of the thesis, we discuss the diffraction problem in an anisotropic medium infinite in the two directions.The key idea is that we can express the solution (via the Fourier transform) in a half-plane given its trace on the boundary. Therefore, the approach consists in coupling several analytical representationsof the solution in half-planes surrounding the defect (at least 3) with the FE representation. The difficulty is to ensure that all these representations match, in particular in the infinite intersections of the half-planes. It leads to a formulation which couples, via integral operators, the solution in a bounded domain including the defect, and its traces on the edge of the half-planes. The approximation releases a truncation and a discretization both in space and Fourier variables.For each of these two parts, the methods have been implemented and validated with a C++ code developed during the thesis, first in the scalar acoustic case, and then in the elastic case. 

Topics
  • impedance spectroscopy
  • simulation
  • anisotropic
  • defect
  • ultrasonic
  • two-dimensional