Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Jain, D.

  • Google
  • 5
  • 12
  • 107

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2019Ultra flat mid-infrared supercontinuum source based on concatenation of Thulium and Germania doped silica fiberscitations
  • 2015Highly efficient Yb-free Er-La-Al doped ultra low NA large mode area single-trench fiber laser26citations
  • 2015Experimental demonstration of single-mode large mode area multi-trench fiber for UV-VIS light transmissioncitations
  • 2014Multi Trench Fiber: an ultra large mode area solution for industrial manufacturingcitations
  • 2014Extending single mode performance of all-solid large-mode-area single trench fiber81citations

Places of action

Chart of shared publication
Sidharthan, R.
1 / 4 shared
Bowen, P.
1 / 13 shared
Moselund, P. M.
1 / 1 shared
Yoo, S.
1 / 25 shared
Bang, Ole
1 / 142 shared
Jung, Yongmin
3 / 17 shared
Barua, P.
2 / 8 shared
Alam, S.
1 / 5 shared
Sahu, Jayanta Kumar
4 / 64 shared
Núñez-Velázquez, Martin Miguel Angel
2 / 17 shared
Alam, S. U.
1 / 2 shared
Baskiotis, C.
1 / 1 shared
Chart of publication period
2019
2015
2014

Co-Authors (by relevance)

  • Sidharthan, R.
  • Bowen, P.
  • Moselund, P. M.
  • Yoo, S.
  • Bang, Ole
  • Jung, Yongmin
  • Barua, P.
  • Alam, S.
  • Sahu, Jayanta Kumar
  • Núñez-Velázquez, Martin Miguel Angel
  • Alam, S. U.
  • Baskiotis, C.
OrganizationsLocationPeople

document

Multi Trench Fiber: an ultra large mode area solution for industrial manufacturing

  • Jain, D.
  • Sahu, Jayanta Kumar
  • Baskiotis, C.
Abstract

High power fiber lasers with good beam quality have shown their potential for numerous applications in material processing, defense, medicine, and space communications etc. Fiber lasers up to 10kW with single mode output have been demonstrated [1]. However, further scaling of power level requires proper management of non-linear effects (like Stimulated Raman Scattering, Stimulated Brillouin Scattering etc). One approach to mitigate non-linear effects is to increase the effective area (Aeff) of the fundamental mode. However, increasing the Aeff of the fundamental mode by increasing the core size, leads to propagation of higher order modes in a conventional fiber, which in, turn deteriorates the beam quality. In the recent years, several fiber designs having large mode area while ensuring single mode operation have been proposed, like Photonic Crystal Fibers (PCFs) [2] and 2-D all solid Photonic Band Gap Fibers (2D-ASPBGFs) [3]. These fibers have shown potential for high power fiber lasers but their fabrication involve stack and draw process, which is quite time consuming and expensive, making them unsuitable for large scale industrial manufacturability. Recently, we proposed the Multi Trench Fibers (MTFs) for high power fiber laser applications [4]. These are cylindrical symmetrical structures, which can be easily manufactured by a conventional fiber fabrication technique, like Modified Chemical Vapor Deposition (MCVD). Fig. 1 (a) shows the schematic of the proposed MTF. Fig. 1(b) shows the cross sectional image of the MTF fabricated using the MCVD process. MTF offers single-mode operation by offering higher losses to the higher order modes, through resonant coupling to the ring modes. Numerical simulation shows the potential of achieving ultra large Aeff 12,000m2 for a 140 m core with good beam quality (M2<1.2), for MTF in rod type configuration, which cannot be bent. Moreover, MTF can offer Aeff larger than 700m2 at a bend radius of 20cm.

Topics
  • impedance spectroscopy
  • simulation
  • chemical vapor deposition