Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kofman, Wlodek W.

  • Google
  • 21
  • 48
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (21/21 displayed)

  • 2017 Interior of 67P/C-G comet as seen by CONSERT bistatic radar on Rosettacitations
  • 2016Cosmochemical implications of CONSERT permittivity characterization of 67P/CGcitations
  • 2016An interpretation of the CONSERT and SESAME-PP results based on new permittivity measurements of porous water ice and ice-basaltic/organic dust mixtures suggests an increase of porosity with depth in 67Pcitations
  • 2016Looking at Comet 67P Sub-surface in the Vicinity of Abydoscitations
  • 2016Characterizing the interior of 67P in the vicinity of Abydoscitations
  • 2016Cosmochemical implications of CONSERT permittivity characterization of 67P/C-Gcitations
  • 2016Heterogeneities of 67P nucleus seen by CONSERT in the vicinity of Abydoscitations
  • 2016Mineralogical Implications of CONSERT Permittivity Characterization of 67Pcitations
  • 2016Effect of meter-scale heterogeneities inside 67P nucleus on CONSERT datacitations
  • 2015Insights gained from Data Measured by the CONSERT Instrument during Philae's Descent onto 67P/C-G's surfacecitations
  • 2015Broadband permittivity measurements on porous planetary regoliths simulants, in relation with the Rosetta mission to 67P/C-Gcitations
  • 2015CONSERT Radar Investigations of the Shallow Subsurface of Comet 67P, in the Vicinity of the Philae Landercitations
  • 2015Broadband Permittivity Measurements on Porous Planetary Soil Simulants, in Relation with the Rosetta Missioncitations
  • 2015The CONSERT Instrument during Philae's Descent onto 67P/C-G’s surface: Insights on Philae’s Attitude and the Surface Permittivity Measurements at the Agilkia-Landing-Sitecitations
  • 2015Revealing the Possible Existence of a Near-Surface Gradient in Local Properties of 67P/Churyumov-Gerasimenko Nucleus Through CONSERT Measurementscitations
  • 2015The interior of 67P/C-G nucleus revealed by CONSERT measurements and simulationscitations
  • 2014Revealing the properties of Chuyurmov-Gerasimenko's shallow sub-surface through CONSERT's measurements at grazing anglescitations
  • 2009Comet nuclei primordial aggregation effects on their internal structurecitations
  • 2008Imaging of the Internal Structure of Comet 67P/Churyumov-Gerasimenko from Radiotomography CONSERT Data (Rosetta Mission) through spectral techniquescitations
  • 2008Comet nuclei aggregation and thermal simulations to prepare the Rosetta missioncitations
  • 2007Imaging of the Internal Structure of Comet 67P/Churyumov-Gerasimenko from Radiotomography CONSERT Data by Using Grid Computing Techniques (Rosetta Mission).citations

Places of action

Chart of shared publication
Hérique, Alain
6 / 11 shared
Lasue, Jérémie
13 / 23 shared
Ciarletti, Valérie
12 / 34 shared
Levasseur-Regourd, Anny Chantal
16 / 30 shared
Zine, Sonia
6 / 10 shared
Plettemeier, Dirk
8 / 20 shared
Buttarazzi, Ilaria
2 / 4 shared
Beck, Pierre
3 / 7 shared
Bonal, Lydie
3 / 7 shared
Heggy, Essam
6 / 7 shared
Quirico, Eric
3 / 12 shared
Sabouroux, Pierre
2 / 13 shared
Gall, Alice Le
1 / 3 shared
Lethuillier, Anthony
1 / 9 shared
Encrenaz, Pierre
3 / 8 shared
Thomas, Nicolas
1 / 6 shared
Poch, Olivier
1 / 5 shared
Neves, Luisa
1 / 2 shared
Brouet, Yann
3 / 9 shared
Herique, Alain
9 / 17 shared
Pommerol, Antoine
1 / 6 shared
Guiffaut, Christophe
4 / 5 shared
Lemonnier, Florentin
3 / 4 shared
Buttarazzi, E.
1 / 1 shared
Rogez, Yves
2 / 5 shared
Statz, Christoph
3 / 6 shared
Hahnel, Ronny
2 / 3 shared
Abraham, Jens
1 / 1 shared
Hegler, Sebastian
2 / 4 shared
Pasquero, Pierre
2 / 4 shared
Thomas, Nick
1 / 2 shared
Olagnier, Fleur
1 / 1 shared
Sabouroux, P.
1 / 6 shared
Brouet, Y.
1 / 5 shared
Thomas, N.
1 / 8 shared
Herique, A.
2 / 6 shared
Statz, C.
1 / 4 shared
Hegler, S.
1 / 2 shared
Plettemeier, D.
1 / 9 shared
Hadamcik, Edith
2 / 5 shared
Botet, R.
1 / 2 shared
Benna, M.
2 / 2 shared
Barriot, J.-P.
2 / 2 shared
Capria, M. T.
1 / 3 shared
Sanctis, Maria Cristina De
1 / 1 shared
Turrini, Diego
1 / 1 shared
Coradini, A.
1 / 3 shared
Botet, Robert
1 / 4 shared
Chart of publication period
2017
2016
2015
2014
2009
2008
2007

Co-Authors (by relevance)

  • Hérique, Alain
  • Lasue, Jérémie
  • Ciarletti, Valérie
  • Levasseur-Regourd, Anny Chantal
  • Zine, Sonia
  • Plettemeier, Dirk
  • Buttarazzi, Ilaria
  • Beck, Pierre
  • Bonal, Lydie
  • Heggy, Essam
  • Quirico, Eric
  • Sabouroux, Pierre
  • Gall, Alice Le
  • Lethuillier, Anthony
  • Encrenaz, Pierre
  • Thomas, Nicolas
  • Poch, Olivier
  • Neves, Luisa
  • Brouet, Yann
  • Herique, Alain
  • Pommerol, Antoine
  • Guiffaut, Christophe
  • Lemonnier, Florentin
  • Buttarazzi, E.
  • Rogez, Yves
  • Statz, Christoph
  • Hahnel, Ronny
  • Abraham, Jens
  • Hegler, Sebastian
  • Pasquero, Pierre
  • Thomas, Nick
  • Olagnier, Fleur
  • Sabouroux, P.
  • Brouet, Y.
  • Thomas, N.
  • Herique, A.
  • Statz, C.
  • Hegler, S.
  • Plettemeier, D.
  • Hadamcik, Edith
  • Botet, R.
  • Benna, M.
  • Barriot, J.-P.
  • Capria, M. T.
  • Sanctis, Maria Cristina De
  • Turrini, Diego
  • Coradini, A.
  • Botet, Robert
OrganizationsLocationPeople

document

Comet nuclei aggregation and thermal simulations to prepare the Rosetta mission

  • Lasue, Jérémie
  • Capria, M. T.
  • Sanctis, Maria Cristina De
  • Turrini, Diego
  • Kofman, Wlodek W.
  • Hadamcik, Edith
  • Coradini, A.
  • Levasseur-Regourd, Anny Chantal
  • Botet, Robert
Abstract

The international Rosetta mission will study in depth 67P/Churyumov-Gerasimenko's nucleus global structure and the onset of its activity during the pre-perihelion phase. Numerical simulations towards realistic models of comet nuclei will facilitate the inversion procedures and the interpretation of the data obtained during the rendez-vous of the mission. New aspects of comet nuclei formation and evolution simulations have been developed by our teams to better describe the physical processes of the origins and evolution of these small bodies. Cometesimal aggregation simulations taking into account the evolution of the cohesive energy by sintering processes during accretion in the Kuiper belt can be used to interpret the layered structure and surface features observed for previous comets [1] and quantify the tensile strengths of these objects. Simulations have been done using up to 50000 cometesimals with sizes ranging from tens to hundreds of meters. A layering of the cohesive strength of the comet nuclei material naturally occurs leading to the presence of a high cohesive core surrounded by less cohesive outer layers. Thermal evolution models of comet nuclei have been rather successful in describing the more recent evolution of these objects. A new quasi-3D approach for non-spherically shaped comet nuclei has been developed for the case of 67P/Churyumov-Gerasimenko's nucleus to analyse the effect of irregular shapes (non-spherical, mountain-like and depression-like features) on its thermal evolution, on the local dust crust formation and the onset of its activity [2]. The results of such simulations are used to derive generic cometary nuclei models to be implemented in the analyses processes of the CONSERT experiment on-board Rosetta that will study the internal dielectric properties and heterogeneities of the nucleus. Support from CNES and Europlanet is acknowledged. [1] Belton et al., Icarus 187, 332 (2007) [2] Lasue et al., PSS, submitted.

Topics
  • impedance spectroscopy
  • surface
  • phase
  • experiment
  • simulation
  • laser emission spectroscopy
  • strength
  • layered
  • tensile strength
  • sintering