Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Napari, Mari

  • Google
  • 15
  • 51
  • 278

King's College London

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (15/15 displayed)

  • 2024Forming-free and non-linear resistive switching in bilayer HfOx/TaOx memory devices by interface-induced internal resistance2citations
  • 2024Spatially selective crystallization of ferroelectric Hf0.5Zr0.5O2 films induced by sub-nanosecond laser annealing4citations
  • 2024Forming-free and non-linear resistive switching in bilayer HfO x /TaO x memory devices by interface-induced internal resistance2citations
  • 2021Nickel oxide thin films grown by chemical deposition techniques: Potential and challenges in next‐generation rigid and flexible device applicationscitations
  • 2021Atomic scale surface modification of TiO2 3D nano-arrays : plasma enhanced atomic layer deposition of NiO for photocatalysis5citations
  • 2020Ti Alloyed α-Ga2O3 : route towards Wide Band Gap Engineering25citations
  • 2020Role of ALD Al2O3 surface passivation on the performance of p-type Cu2O thin film transistorscitations
  • 2020Ti alloyed $α$-Ga$_2$O$_3$: route towards wide band gap engineeringcitations
  • 2020Bandgap Lowering in Mixed Alloys of Cs2Ag(SbxBi1-x)Br6 Double Perovskite Thin Filmscitations
  • 2020Ti Alloyed α-Ga2O3: Route towards Wide Band Gap Engineering25citations
  • 2020Ti Alloyed α-Ga2O3: Route towards Wide Band Gap Engineering.citations
  • 2020Bandgap lowering in mixed alloys of Cs2Ag(SbxBi1−x)Br6 double perovskite thin films97citations
  • 2020Bandgap lowering in mixed alloys of Cs2Ag(SbxBi1−x)Br6 double perovskite thin films97citations
  • 2020Ti Alloyed α -Ga 2 O 3: Route towards Wide Band Gap Engineeringcitations
  • 2017Room-temperature plasma-enhanced atomic layer deposition of ZnO : Film growth dependence on the PEALD reactor configuration21citations

Places of action

Chart of shared publication
Prodromakis, Themistoklis
2 / 23 shared
Simanjuntak, Firman Mangasa
2 / 11 shared
Stathopoulos, Spyros
2 / 7 shared
Frechilla, Alejandro
1 / 1 shared
Fuente, Germán F. De La
1 / 23 shared
Barriuso, Eduardo
1 / 1 shared
Flewitt, Andrew
1 / 3 shared
Niang, Kham
1 / 2 shared
Hellenbrand, Markus
1 / 4 shared
Angurel, Luis A.
1 / 16 shared
Strkalj, Nives
1 / 2 shared
Magén, César
1 / 53 shared
Macmanus-Driscoll, Judith L.
2 / 28 shared
Pardo, José A.
1 / 2 shared
Antorrena, Guillermo
1 / 2 shared
Štrichovanec, Pavel
1 / 2 shared
Simanjuntak, Firman
1 / 4 shared
Macmanusdriscoll, Judith L.
1 / 2 shared
Huq, Tahmida N.
1 / 2 shared
Hoye, Robert L. Z.
2 / 26 shared
Johnson, Andrew L.
1 / 40 shared
Marken, Frank
1 / 91 shared
Sajavaara, Timo
6 / 55 shared
Innocent, Jerome W. F.
1 / 1 shared
Harris-Lee, Thom R.
1 / 1 shared
Regue, Miriam
1 / 2 shared
Alkhalil, Feras
1 / 1 shared
Frentrup, Martin
4 / 19 shared
Kovács, András
4 / 19 shared
Chalker, Paul
4 / 8 shared
Huq, Tahmid
1 / 1 shared
Massabuau, Fabien
4 / 7 shared
Barthel, Armin
4 / 5 shared
Roberts, Joseph
4 / 12 shared
Oliver, Rachel
4 / 16 shared
Huq, Tahmida
3 / 3 shared
Andaji-Garmaroudi, Zahra
1 / 13 shared
Scanlon, David O.
1 / 16 shared
Kavanagh, Seán R.
1 / 6 shared
Abdi-Jalebi, Mojtaba
1 / 29 shared
Palgrave, Robert G.
1 / 6 shared
Laitinen, Mikko
1 / 16 shared
Davies, Daniel W.
1 / 2 shared
Julin, Jaakko
2 / 22 shared
Walsh, Aron
1 / 79 shared
Friend, Richard H.
1 / 48 shared
Isaacs, Mark A.
1 / 22 shared
Li, Zewei
1 / 3 shared
Veselov, Alexey
1 / 1 shared
Lahtinen, Manu
1 / 14 shared
Østreng, Erik
1 / 3 shared
Chart of publication period
2024
2021
2020
2017

Co-Authors (by relevance)

  • Prodromakis, Themistoklis
  • Simanjuntak, Firman Mangasa
  • Stathopoulos, Spyros
  • Frechilla, Alejandro
  • Fuente, Germán F. De La
  • Barriuso, Eduardo
  • Flewitt, Andrew
  • Niang, Kham
  • Hellenbrand, Markus
  • Angurel, Luis A.
  • Strkalj, Nives
  • Magén, César
  • Macmanus-Driscoll, Judith L.
  • Pardo, José A.
  • Antorrena, Guillermo
  • Štrichovanec, Pavel
  • Simanjuntak, Firman
  • Macmanusdriscoll, Judith L.
  • Huq, Tahmida N.
  • Hoye, Robert L. Z.
  • Johnson, Andrew L.
  • Marken, Frank
  • Sajavaara, Timo
  • Innocent, Jerome W. F.
  • Harris-Lee, Thom R.
  • Regue, Miriam
  • Alkhalil, Feras
  • Frentrup, Martin
  • Kovács, András
  • Chalker, Paul
  • Huq, Tahmid
  • Massabuau, Fabien
  • Barthel, Armin
  • Roberts, Joseph
  • Oliver, Rachel
  • Huq, Tahmida
  • Andaji-Garmaroudi, Zahra
  • Scanlon, David O.
  • Kavanagh, Seán R.
  • Abdi-Jalebi, Mojtaba
  • Palgrave, Robert G.
  • Laitinen, Mikko
  • Davies, Daniel W.
  • Julin, Jaakko
  • Walsh, Aron
  • Friend, Richard H.
  • Isaacs, Mark A.
  • Li, Zewei
  • Veselov, Alexey
  • Lahtinen, Manu
  • Østreng, Erik
OrganizationsLocationPeople

document

Bandgap Lowering in Mixed Alloys of Cs2Ag(SbxBi1-x)Br6 Double Perovskite Thin Films

  • Napari, Mari
Abstract

Halide double perovskites have gained significant attention, owing to their composition of low-toxicity elements, stability in air and long charge-carrier lifetimes. However, most double perovskites, including Cs2AgBiBr6, have wide bandgaps, which limit photo conversion efficiencies. The bandgap can be reduced through hallowing with Sb3+, but Sb-rich alloys are difficult to synthesise due to the high formation energy of Cs2AgSbBr6, which itself has a wide bandgap. We develop a solution-based route to synthesis phase-pure Cs2Ag(SbxBi1-x)Br6 thin films, with the mixing parameter x continuous varying over the entire composition range. We reveal that the mixed alloys (x between 0.5 and 0.9) demonstrate smaller bandgaps (as low as 2.08 eV) than the pure Sb- (2.18 eV) and Bi-based (2.25 eV) compounds, with strong deviation from Vegard's law. Through in-depth computations, we propose that bandgap lowering arises from the Type II band alignment between Cs2AgBiBr6 and Cs2AgSbBr6. The energy mismatch between the Bi and Sb s and p atomic orbitals, coupled with their non-linear mixing, results in the alloys adopting a smaller bandgap than the pure compounds. Our work demonstrates an approach to achieve bandgap reduction and highlights that bandgap bowing may be found in other double perovskite alloys by pairing together materials forming a Type II band alignment.

Topics
  • perovskite
  • compound
  • phase
  • thin film
  • forming
  • toxicity