Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Cordova, Laura

  • Google
  • 12
  • 29
  • 467

Universidad Politécnica de Madrid

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (12/12 displayed)

  • 2023Impact of powder reusability on batch repeatability of Ti6Al4V ELI for PBF-LB industrial production10citations
  • 2020Porous materials additively manufactured at low energy18citations
  • 2020Exploring the influence of powder properties and handling on the selective laser melting processcitations
  • 2020Effects of powder reuse on the microstructure and mechanical behaviour of Al-Mg-Sc-Zr alloy processed by laser powder bed fusion (LPBF)103citations
  • 2020Measuring the spreadability of pre-treated and moisturized powders for laser powder bed fusion99citations
  • 2019An Overview: Laser-Based Additive Manufacturing for High Temperature Tribology19citations
  • 2019Laser metal deposition of vanadium-rich high speed steel: Microstructuraland high temperature wear characterization19citations
  • 2019Drying strategies to reduce the formation of hydrogen porosity in Al alloys produced by Additive Manufacturingcitations
  • 2019Melt Pool Monitoring for the Laser Powder Bed Fusion Processcitations
  • 2019Revealing the Effects of Powder Reuse for Selective Laser Melting by Powder Characterization199citations
  • 2018Mechanical properties of aluminum alloys produced by Metal Additive Manufacturingcitations
  • 2017Powder Characterization and Optimization for Additive Manufacturingcitations

Places of action

Chart of shared publication
Sithole, Cindy
1 / 1 shared
Campos, Mónica
6 / 10 shared
Rodríguez, Eric Macía
1 / 1 shared
Gibson, Ian
4 / 40 shared
Jafari, Davoud
1 / 3 shared
Vaneker, Tom
1 / 5 shared
Römer, Gert-Willem
3 / 15 shared
Ur Rahman, Naveed
2 / 6 shared
Alphen, Koen J. H. Van
1 / 1 shared
Wits, Wessel
1 / 15 shared
Geurts, Bernardus J.
1 / 3 shared
Tinga, Tiedo
7 / 28 shared
Carmignato, Simone
1 / 19 shared
Smit, Marc De
2 / 3 shared
Bor, Ton
3 / 6 shared
Khorasani, Amir Mahyar
2 / 17 shared
Rooij, Matthijn De
1 / 1 shared
Matthews, David Thomas Allan
1 / 1 shared
Rahman, Naveed Ur
1 / 1 shared
Matthews, David
1 / 35 shared
Mekicha, M. A.
1 / 3 shared
Sinnaeve, M.
1 / 5 shared
Capuano, Luigi
1 / 6 shared
Walmag, G.
1 / 7 shared
Garcia-Junceda, A.
1 / 6 shared
De Rooij, Matthijn
1 / 38 shared
Campos, Monica
2 / 5 shared
Bor, T. C.
1 / 18 shared
Macia, Eric
1 / 3 shared
Chart of publication period
2023
2020
2019
2018
2017

Co-Authors (by relevance)

  • Sithole, Cindy
  • Campos, Mónica
  • Rodríguez, Eric Macía
  • Gibson, Ian
  • Jafari, Davoud
  • Vaneker, Tom
  • Römer, Gert-Willem
  • Ur Rahman, Naveed
  • Alphen, Koen J. H. Van
  • Wits, Wessel
  • Geurts, Bernardus J.
  • Tinga, Tiedo
  • Carmignato, Simone
  • Smit, Marc De
  • Bor, Ton
  • Khorasani, Amir Mahyar
  • Rooij, Matthijn De
  • Matthews, David Thomas Allan
  • Rahman, Naveed Ur
  • Matthews, David
  • Mekicha, M. A.
  • Sinnaeve, M.
  • Capuano, Luigi
  • Walmag, G.
  • Garcia-Junceda, A.
  • De Rooij, Matthijn
  • Campos, Monica
  • Bor, T. C.
  • Macia, Eric
OrganizationsLocationPeople

document

Powder Characterization and Optimization for Additive Manufacturing

  • Tinga, Tiedo
  • Campos, Mónica
  • Cordova, Laura
Abstract

Achieving the optimal quality for Additive Manufactured (AM) parts does not only depend on setting the right process parameters. Material feedstock also plays an important role when aiming for high performance products. The metal AM processes that are most applicable to industry, Powder Bed Fusion and Directed Energy Deposition, use metal powder as raw material. Therefore, controlling the quality and correctly characterizing the particles used in the process is a key step to successfully apply metal AM techniques. A correct flow of the powder and a constant apparent density over the build plate/substrate ensure a smooth process, less porosity and better surface resolution. In the present paper a methodology for AM powder characterization will be proposed, based on parameters like particle size distribution and shape, and experimental results will be presented. A series of representative materials from the above-mentioned techniques are studied to find the optimal particle parameters required in the metal AM processes.

Topics
  • Deposition
  • density
  • impedance spectroscopy
  • surface
  • laser emission spectroscopy
  • porosity
  • directed energy deposition
  • powder bed fusion