People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Cordova, Laura
Universidad Politécnica de Madrid
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2023Impact of powder reusability on batch repeatability of Ti6Al4V ELI for PBF-LB industrial productioncitations
- 2020Porous materials additively manufactured at low energycitations
- 2020Exploring the influence of powder properties and handling on the selective laser melting process
- 2020Effects of powder reuse on the microstructure and mechanical behaviour of Al-Mg-Sc-Zr alloy processed by laser powder bed fusion (LPBF)citations
- 2020Measuring the spreadability of pre-treated and moisturized powders for laser powder bed fusioncitations
- 2019An Overview: Laser-Based Additive Manufacturing for High Temperature Tribologycitations
- 2019Laser metal deposition of vanadium-rich high speed steel: Microstructuraland high temperature wear characterizationcitations
- 2019Drying strategies to reduce the formation of hydrogen porosity in Al alloys produced by Additive Manufacturing
- 2019Melt Pool Monitoring for the Laser Powder Bed Fusion Process
- 2019Revealing the Effects of Powder Reuse for Selective Laser Melting by Powder Characterizationcitations
- 2018Mechanical properties of aluminum alloys produced by Metal Additive Manufacturing
- 2017Powder Characterization and Optimization for Additive Manufacturing
Places of action
Organizations | Location | People |
---|
document
Powder Characterization and Optimization for Additive Manufacturing
Abstract
Achieving the optimal quality for Additive Manufactured (AM) parts does not only depend on setting the right process parameters. Material feedstock also plays an important role when aiming for high performance products. The metal AM processes that are most applicable to industry, Powder Bed Fusion and Directed Energy Deposition, use metal powder as raw material. Therefore, controlling the quality and correctly characterizing the particles used in the process is a key step to successfully apply metal AM techniques. A correct flow of the powder and a constant apparent density over the build plate/substrate ensure a smooth process, less porosity and better surface resolution. In the present paper a methodology for AM powder characterization will be proposed, based on parameters like particle size distribution and shape, and experimental results will be presented. A series of representative materials from the above-mentioned techniques are studied to find the optimal particle parameters required in the metal AM processes.