People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Reitmeier, Zj
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2005Structural TEM study of nonpolar a-plane gallium nitride grown on (1120) 4H-SiC by organometallic vapor phase epitaxycitations
- 2005Transmission electron microscopy study of nonpolar a-plane GaN grown by pendeo-epitaxy on (11(2)under-bar0) 4H-SiC
- 2004Characterization and comparison of 4H-SiC(11(2)over-bar0) and 4H-SiC(0001) 8 degrees off-axis substrates and homoepitaxial films
- 2003Growth and characterization of epitaxial GaN thin films on 4H-SiC (11.0) substrates
Places of action
Organizations | Location | People |
---|
document
Transmission electron microscopy study of nonpolar a-plane GaN grown by pendeo-epitaxy on (11(2)under-bar0) 4H-SiC
Abstract
<p>Pendeo-epitaxy has been applied to nonpolar a-plane GaN layers in order to observe if such process will lead to defect reduction in comparison with direct growth on this plane. Uncoalesced and coalesced a-plane GaN layers with thicknesses 2 mu m and 12 mu m, respectively, have been studied by conventional and high resolution electron microscopy. The following structural defects have been observed in pendeo-epitaxial layers: (1) basal stacking faults, (2) threading dislocations, and (3) prismatic stacking faults. A drastic decrease in the density of threading dislocations and stacking faults was observed in 'wing' areas with respect to 'seed' areas. Cross-section images reveal cracks and voids at the areas where two coalesced wings meet each other. High resolution electron microscopy shows that the majority of stacking faults are low-energy planar defects of the types I-1, I-2 and I-3. The I-3 type basal stacking fault, predicted theoretically, was observed experimentally for the first time.</p>