People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Aremu, Adedeji
Coventry University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2023Mechanical characterisation and crashworthiness performance of additively manufactured polymer-based honeycomb structures under in-plane quasi-static loadingcitations
- 2023Finite element model of fiber volume effect on the mechanical performance of additively manufactured carbon fiber reinforced plastic compositescitations
- 2022Material design factors in the additive manufacturing of Carbon Fiber Reinforced Plastic Compositescitations
- 2019Using machine learning to aid in the parameter optimisation process for metal-based additive manufacturingcitations
- 2018Insights into the mechanical properties of several triply periodic minimal surface lattice structures made by polymer additive manufacturingcitations
- 2017Compressive failure modes and energy absorption in additively manufactured double gyroid latticescitations
- 2017Non-linear Contact Analysis of Self-Supporting Lattice
- 2017Insights into the mechanical properties of several triplyperiodic minimal surface lattice structures made by polymeradditive manufacturingcitations
- 2016A mechanical property evaluation of graded density Al-Si10-Mg lattice structures manufactured by selective laser meltingcitations
- 2016Effects of Net and Solid Skins on Self-Supporting Lattice Structures
- 2014The BCC unit cell for latticed SLM parts; mechanical properties as a function of cell size
- 2014A Comparative Finite Element Study of Cubic Unit Cells for Selective Laser Melting
Places of action
Organizations | Location | People |
---|
document
A Comparative Finite Element Study of Cubic Unit Cells for Selective Laser Melting
Abstract
Selective laser melting (SLM) enables the utilization of complicated lattice structures in metallic components. To exploit this capability, it is important to understand the structural properties of these lattices. Topological variations in lattices are diverse, however, only a few are suitable for SLM since some lattices require supports during manufacture while others self-support. Difficulties associated with the removal of these supports and their detrimental effects on surface finish makes the latter group better suited for SLM. In this work, we investigate the structural properties of some self-supporting unit cells via a finite element study and show that the performance of a lattice structure is largely dependent on the topology of the unit cell. Variants of the gyroid and face centred cubic unit cells performed better than body centred cubic cells. This was also observed when lattices, made of repeating unit cells were compared.<br/>