People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hühne, Christian
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (27/27 displayed)
- 2024Increased accuracy of service life prediction for fiber metal laminates by consideration of the manufacturing-induced residual stress statecitations
- 2024Bolt-bearing behavior of hybrid CFRP-steel laminates at low temperaturecitations
- 2024STRUCTURAL PART STIFFNESS TEST IN COMPARISON TO THE FE-PREDICTION. A TEST COMBINING CONTINUOUS STRUCTURE WITH COMPLEX INTERFACES
- 2024Equivalent plate formulation of Double-Double laminates for the gradient-based design optimization of composite structurescitations
- 2024Local Surface Toughening – A boltless crack stopping technology for aerospace structures
- 2024Validation of static residual strength analyses of fiber composite bonded joints
- 2023Steigerung der Robustheit von strukturellen Klebungen mittels Surface Toughening am Beispiel HAP
- 2023Anisotropic flexure hinges: Manufacturing and mechanical characterization forapplication in pressure-actuated morphing structures
- 2023THERMAL CONDUCTIVITY CHARACTERIZATION OF A CFRP SINGLE-LAP JOINT
- 2023Curvature Analysis of asymmetric Specimes for the residual stress quantification in fiber metal laminates
- 2023Comparison of Continuum Shell and Solid Element-Based Modeling Strategies for Mesoscale Progressive Damage Analysis of Fiber Compositescitations
- 2023Investigations on Guided Ultrasonic Wave Dispersion Behavior in Fiber Metal Laminates Using Finite Element Eigenvalue Analysiscitations
- 2023Anisotropic flexure hinges: Manufacturing and mechanical characterization for application in pressure-actuated morphing structurescitations
- 2023Gradient-based Design Optimization of Composite Structures using Double-Double Laminates
- 2023Aeroelastic Analysis of Actuated Adaptive Wingtips Based on Pressure-Actuated Cellular Structures
- 2023Effect of low temperature on mode I and mode II interlaminar fracture toughness of CFRP-steel hybrid laminatescitations
- 2022Polyetherimide-Reinforced Smart Inlays for Bondline Surveillance in Composites
- 2022In-situ quantification of manufacturing-induced strains in fiber metal laminates with strain gages
- 2022Applicability of Asymmetric Specimens for Residual Stress Evaluation in Fiber Metal Laminatescitations
- 2020Surface toughening - An industrial approach to increase the robustness of pure adhesive joints with film adhesivescitations
- 2019Decision Tree-based Machine Learning to Optimize the Laminate Stacking of Composite Cylinders for Maximum Buckling Load and Minimum Imperfection Sensitivity
- 2016Degradation analysis of fibre-metal laminates under service conditions to predict their durability
- 2016Experimental investigations on residual stresses during the fabrication of intrinsic CFRP-steel laminates
- 2013Effective lightweight design of a rocket interstage ring through mixed-integer optimization
- 2012Experimental identification of process parameters inducing warpage of autoclave-processed CFRP partscitations
- 2011A semi-analytical simulation strategy and its application to warpage of autoclave-processed CFRP partscitations
- 2005Robuster Entwurf beulgefährdeter, unversteifter Kreiszylinderschalen aus Faserverbundwerkstoff ; Robust Design of Unstiffened Cylindrical Shells made of Composite Material
Places of action
Organizations | Location | People |
---|
document
Experimental investigations on residual stresses during the fabrication of intrinsic CFRP-steel laminates
Abstract
This paper focuses on process-related thermal residual stress in fibre metal laminates, consisting of thin steel foils and CFRP prepreg layers. Different process modifications during fabrication were investigated, modifying temperature, pressure and the vacuum bagging arrangement. The impact of these parameters is measured on the deflection of asymmetrical specimens, enabling the evaluation of the potential of specific configurations. For detailed investigations, a cure monitoring system with fibre bragg grating (FBG) sensors was used to measure the in-plane strains during processing. The investigations show a relationship between cure reaction and processing strains. This allows the characterisation of the co-cure bonding process and the resulting residual stress state in nearly any FML configuration. A new method is presented for quantitative predictions of residual stresses in CFRP-steel laminates. It is characterized by the subsequent removal of the steel layers and in-situ measurements of the resulting strain changes with the help of embedded FBG-sensors.