Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Chan, Lydia

  • Google
  • 4
  • 5
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2017Process Optimisation for Internal Cylindrical Rough Turning of Nickel Alloy 625 Weld Overlaycitations
  • 2016Optimisation of Weld Overlay Cladding Parameters Using Full-Factorial Design of Experimentcitations
  • 2016Optimisation of Weld Overlay Cladding Parameters Using Full-Factorial Design of Experimentcitations
  • 2016Weld overlay cladding repair - An investigation of tensile strength variation in processed metallic substratecitations

Places of action

Chart of shared publication
Hackney, Philip
2 / 12 shared
Dreyer, Dale
3 / 3 shared
Hamilton, John
4 / 4 shared
Shyha, Islam
4 / 30 shared
Dryer, Dale
1 / 1 shared
Chart of publication period
2017
2016

Co-Authors (by relevance)

  • Hackney, Philip
  • Dreyer, Dale
  • Hamilton, John
  • Shyha, Islam
  • Dryer, Dale
OrganizationsLocationPeople

document

Weld overlay cladding repair - An investigation of tensile strength variation in processed metallic substrate

  • Hackney, Philip
  • Dreyer, Dale
  • Hamilton, John
  • Shyha, Islam
  • Chan, Lydia
Abstract

Weld Overlay Cladding (WOC) is a surfacing technique commonly applied on subsea Oil and Gas components to provide additional properties such as wear and corrosion resistance at a more superior level. This process involves a clad metal with certain desirable characteristics – tends to be a superalloy – being fusion-welded onto a lower cost standard metallic substrate such as steel. In some cases, a repair is required to recondition damaged or corroded clad surfaces. This paper presents an investigation on tensile strength variation that occurs in the metallic substrate post-repair. Tensile tests were carried out on specimens extracted from a repaired substrate and a section of unclad substrate. Results were compared and have shown that variations occurred in both pieces – neither were close to the values stated on the material certificate or previous test certificate. Through literature review, suggestions were made for the reasons behind this phenomenon. Recommendations were proposed as to how such non-uniformity can be prevented or rectified through amending material procurement and cladding procedure.

Topics
  • impedance spectroscopy
  • surface
  • corrosion
  • strength
  • steel
  • tensile strength
  • superalloy