People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hackney, Philip
Northumbria University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2021Effect of Polypropylene fibres on the Workability parameters of Extrudable Cementitious Materialcitations
- 2020Effect of polypropylene fibres on the workability parameters of extrudable cementitious materialscitations
- 2017Optimisation of Additive Manufactured Sand Printed Mould Material for Aluminium Castingscitations
- 2017Operational performance of individual handsaw teeth
- 20173D Sand Printing for Automotive Mass Production Applicationscitations
- 2017Characterisation of direct 3D sand printing process for the production of sand cast mould toolscitations
- 2017Process Optimisation for Internal Cylindrical Rough Turning of Nickel Alloy 625 Weld Overlay
- 2016Weld overlay cladding repair - An investigation of tensile strength variation in processed metallic substrate
- 2015Investigation into the Development of an Additive Manufacturing Technique for the Production of Fibre Composite Productscitations
- 2012Determination of wood strength properties through standard test procedures
- 2005Reverse Engineering – Speeds up manufacture of thermoforming tools
- 2005Reverse Engineering – Speeds up manufacture of thermoforming tools
Places of action
Organizations | Location | People |
---|
document
Weld overlay cladding repair - An investigation of tensile strength variation in processed metallic substrate
Abstract
Weld Overlay Cladding (WOC) is a surfacing technique commonly applied on subsea Oil and Gas components to provide additional properties such as wear and corrosion resistance at a more superior level. This process involves a clad metal with certain desirable characteristics – tends to be a superalloy – being fusion-welded onto a lower cost standard metallic substrate such as steel. In some cases, a repair is required to recondition damaged or corroded clad surfaces. This paper presents an investigation on tensile strength variation that occurs in the metallic substrate post-repair. Tensile tests were carried out on specimens extracted from a repaired substrate and a section of unclad substrate. Results were compared and have shown that variations occurred in both pieces – neither were close to the values stated on the material certificate or previous test certificate. Through literature review, suggestions were made for the reasons behind this phenomenon. Recommendations were proposed as to how such non-uniformity can be prevented or rectified through amending material procurement and cladding procedure.