Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Leiske, Meike N.

  • Google
  • 2
  • 6
  • 6

University of Bayreuth

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2016Cationic ring-opening polymerization of protected oxazolidine imines resulting in gradient copolymers of poly(2-oxazoline) and poly(urea)6citations
  • 2016Cationic ring-opening polymerization of protected oxazolidine imines resulting in gradient copolymers of poly(2-oxazoline) and poly(urea)citations

Places of action

Chart of shared publication
Paulus, Renzo M.
1 / 2 shared
Hartlieb, Matthias
1 / 5 shared
Bellstedt, Peter
1 / 1 shared
Görls, Helmar
1 / 5 shared
Schubert, Ulrich S.
1 / 19 shared
Sobotta, Fabian H.
1 / 1 shared
Chart of publication period
2016

Co-Authors (by relevance)

  • Paulus, Renzo M.
  • Hartlieb, Matthias
  • Bellstedt, Peter
  • Görls, Helmar
  • Schubert, Ulrich S.
  • Sobotta, Fabian H.
OrganizationsLocationPeople

article

Cationic ring-opening polymerization of protected oxazolidine imines resulting in gradient copolymers of poly(2-oxazoline) and poly(urea)

  • Leiske, Meike N.
Abstract

Poly(urea)s are a polymer class widely used in industry. Their utilization in biomedical applications is already described, however, the use of controlled polymerization methods instead of polycondensation approaches would allow a better control over the degree of polymerization and the dispersity of the resulting polymers, improving their suitability for this particular field of application. Cationic ring-opening polymerization (CROP) as a chain growth polymerization enables those requirements and, additionally, allows the copolymerization with 2-oxazolines, which are generally known for their biocompatibility. In this report, a Boc protected oxazolidine imine monomer is synthesized and polymerized in a homopolymerization, as well as in a copolymerization with 2-ethyl-2-oxazoline (EtOx) via CROP. The synthesized polymers were analyzed regarding their chemical and physical properties, using NMR, GC, MALDI-MS, SEC, TGA and DSC. Copolymerization kinetics revealed the formation of quasi-block copolymers, able to self-assemble in aqueous solution as indicated by DLS.

Topics
  • impedance spectroscopy
  • thermogravimetry
  • differential scanning calorimetry
  • copolymer
  • size-exclusion chromatography
  • Nuclear Magnetic Resonance spectroscopy
  • block copolymer
  • gas chromatography
  • matrix-assisted laser desorption–ionisation
  • biocompatibility
  • dynamic light scattering
  • gradient copolymer
  • matrix-assisted laser desorption-ionisation mass spectrometry