People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Berger, Paul R.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2022Flexible Polymer Rectifying Diode on Plastic Foils with MoO3Hole Injection
- 2021Selective atomic layer deposition on flexible polymeric substrates employing a polyimide adhesive as a physical maskcitations
- 2021Selective atomic layer deposition on flexible polymeric substrates employing a polyimide adhesive as a physical maskcitations
- 2020RTD Light Emission around 1550 nm with IQE up to 6% at 300 Kcitations
- 20190.7-GHz Solution-Processed Indium Oxide Rectifying Diodescitations
- 2019930 kA/cm2 peak tunneling current density in GaN/AlN resonant tunneling diodes grown on MOCVD GaN-on-sapphire templatecitations
- 2017High performance, Low-voltage, Solution-processable Indium Oxide Thin Film Transistors using Anodic Al2O3 Gate Dielectric.
- 2017Negative differential resistance in polymer tunnel diodes using atomic layer deposited, TiO2 tunneling barriers at various deposition temperaturescitations
- 2012200-mm CVD grown Si/SiGe resonant interband tunnel diodes optimized for high peak-to-valley current ratios
- 2011Interfacial design and structure of protein/polymer films on oxidized AlGaN surfacescitations
- 2010Plasma-polymerized multistacked bipolar gate dielectric for organic thin-film transistorscitations
- 20084.8% efficient poly(3-hexylthiophene)-fullerene derivative (1:0.8) bulk heterojunction photovoltaic devices with plasma treated Ag Ox /indium tin oxide anode modificationcitations
- 2008Enhanced emission using thin Li-halide cathodic interlayers for improved injection into poly(p-phenylene vinylene) derivative PLEDscitations
- 2008Plasma-polymerized multistacked organic bipolar filmscitations
- 2006Low sidewall damage plasma etching using ICP-RIE with HBr chemistry of Si/SiGe resonant interband tunnel diodescitations
- 2000Current-voltage characteristics of high current density silicon Esaki diodes grown by molecular beam epitaxy and the influence of thermal annealingcitations
Places of action
Organizations | Location | People |
---|
document
High performance, Low-voltage, Solution-processable Indium Oxide Thin Film Transistors using Anodic Al2O3 Gate Dielectric.
Abstract
Transparent electronics based upon metal oxide semiconductors is a major rapidly growing and promising technology for thin film electronics, especially printed electronics. The oxide semiconductors, especially the amorphous metal ones, made a remarkable progress in a relatively short time, challenging silicon not only in conventional applications but opening doors to completely new and disruptive areas like flexible and printed electronics. The special emphasis of metal oxide semiconductors, due to the high carrier mobilities, wide band gaps, broad transparency windows, tunable doping levels, and amenability to room-temperature film growth. Among metal oxides, In2O3 is a promising n-type semiconductor having a wide band gap (3.6-3.75 eV), high mobility [1]. Here we report the thin film transistor (TFT) fabrication by solution processable high-quality In2O3 thin films and anodic oxidized Al2O3 to form a dielectric.<br/>TFTs with an indium oxide based semiconductors channel provides the added advantage of allowing for very low temperature processing. Oxide semiconductor based devices is a new technology that not only may replace the conventional silicon technology in some applications but also opens new areas of applications, probably faster than we can imagine or realize. Here we unite the device design, fabrication using very thin anodic Al2O3 dielectric testing to push the boundaries of lower temperature fabrication to reduce operating voltage, less than 5 volts. The TFT tested here exhibit field-effect mobilities as high as µsat = 3.5 cm2/V-1s-1, Ion/Ioff 105, turn on voltage 0.6 V and operate at 3.0 V.<br/>The indium oxide TFTs were fabricated on glass substrates, with a bottom-gate top-contact TFTs were prepared on glass substrate. Initially, to form a gate contact 100 µm Al metal evaporated with a shadow mask, using a e-beam evaporator. The anodization process has been performed to form a good quality, pin hole free and room temperature aluminum oxide dielectric films [2,3]. Depending on the conditions of preparation the dielectric constant of the aluminum oxide varies between 7.5 to as high as 15 [4]. The anodic aluminum shows an excellent dielectric property along with very dense barrier oxide films that can be grown on the substrates at room temperature [5]. Followed by a spin coating of indium oxide film [6], the samples were dried at 90°C on a hot plate in air for 15 min. and then annealed at 300 °C for 30 min. Finally, to 100 um Aluminum were evaporated by using a shadow mask to form a drain – source contact. Electrical characterization was performed in using a keysight B1500A semiconductor device parameter analyzer.<br/>