People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Roy, Sudipta
University of Strathclyde
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (25/25 displayed)
- 2023Influence of corrosion reactions on the pulse electrodeposition of metals and alloyscitations
- 2022Modelling the scaling-up of the nickel electroforming processcitations
- 2022Characteristics of anode materials for nickel electroformingcitations
- 2021Pulse electrodeposition of copper in the presence of a corrosion reactioncitations
- 2020Effect of water on the electrodeposition of copper from a deep eutectic solventcitations
- 2019Investigation of water absorption profile of mineral wool insulation
- 2019Electrodeposition of Fe-Sn from the chloride-based electrolytecitations
- 2019Electroforming of large scale nickel structures for leading-edge energy, aerospace and marine applications
- 2018Anodic reactions and the corrosion of copper in deep eutectic solventscitations
- 2018Pt-Ni Subsurface Alloy Catalystscitations
- 2018Electrodeposition of Cu from a water-containing deep eutectic solvent
- 2018Design of an ultrasonic tank reactor for copper deposition at electrodes separated by a narrow gapcitations
- 2017The influence of water on the cathodic voltammetric responses of choline chloride-urea and choline chloride-ethylene glycol deep eutectic solvents
- 2017Pulse plating of copper from deep eutectic solventscitations
- 2017Electrodeposition of copper from deep eutectic solvents by using pulse current
- 2017Effect of water on Cu electrodeposition from ethaline based deep eutectic solvent
- 2017Effect of water on Cu electrodeposition from ethaline based deep eutectic solvent
- 2016Metal recovery from low concentration solutions using a flow-by reactor under galvanostatic approachcitations
- 2016Sono-electrodeposition transfer of micro-scale copper patterns on to A7 substrates using a mask-less methodcitations
- 2015A soluble molecular variant of the semiconducting silicondiselenidecitations
- 2015The role of fluorosurfactant on Cu-Sn electrodeposition from methanesulfonic acidcitations
- 2015Codeposition of Cu-Sn from ethaline deep eutectic solventcitations
- 2014Effect of ultrasound on mass transfer during electrodeposition for electrodes separated by a narrow gapcitations
- 2014Electrochemical copper deposition from an ethaline-CuCl2·2H2O DEScitations
- 2012Pulse Plating
Places of action
Organizations | Location | People |
---|
document
The influence of water on the cathodic voltammetric responses of choline chloride-urea and choline chloride-ethylene glycol deep eutectic solvents
Abstract
During the last decade, choline chloride-based deep eutectic solvents (DESs) have been successfully used for electrodeposition of different metals (Cr, Mn, Cu, Ag, Fe, Zn) and alloys (ZnCr, Zn-Sn, Zn-Ni, Zn-Mn, Ni-Co etc.) on different substrates, producing films with characteristics that are completely different from those obtained from aqueous electrolytes. Yet, the processes which occur in the blank electrolytes during the cathodic polarization of the DESs, are still not completely understood. Besides, the role of water molecules in these cathodic processes, has not been investigated in detail. It is almost impossible to avoid the water presence during the electrodeposition of metal coatings from DESs. The water is absorbed due to the high hygroscopicity of DESs, but is also added with hydrated metal salts. This work aims to compare the cyclic voltammograms (CVs) of DESs of different compositions. The blank DESs were the mixtures of choline chloride with urea or with ethylene glycol. The CVs were recorded in electrolytes with various ratios of choline chloride, urea, ethylene glycol, and water. The increase in the concentration of a certain substance in DES results in the increase in the cathodic voltammetric peak or the cathodic current. So, it is possible to determine the species that are reduced preferentially from the mixture of the two or three substances. The measurements taken until now, have led us to assume interesting conclusions. Namely, the species which originate from urea, ethylene glycol or water, are reduced at more positive potential than choline chloride. Besides, it seems that the electrode potential where the reduction starts is the same for these three substances (urea, ethylene glycol and water), in case that they are analysed separately. However, when both urea and water (or both urea and ethylene glycol) are present in DES, their reduction does not occur at the same potential. Instead, the water (or ethylene glycol) reduction occurs at more positive potential, which is seen as the cathodic peak, while the urea reduction in this case is hindered (shifted to more negative potential).