People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ottosen, Lisbeth M.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (34/34 displayed)
- 2024Microcracks assessment during unloading for structural elements reuse
- 2024Rheological characterization of temperature-sensitive biopolymer-bound 3D printing concretecitations
- 2024Mechanical properties of mortar substituting fine aggregate with wood bottom ash from fluidized bed boilers
- 2024Screening of natural polymers as binder in concrete compositescitations
- 2023Clay Brick Powder as Partial Cement Replacementcitations
- 2023Possible Applications for Waste Fishing Nets in Construction Materialcitations
- 2022Utilization of acid-washed sewage sludge ash as sand or cement replacement in concretecitations
- 2021Recovering rare earth elements from contaminated soils: Critical overview of current remediation technologiescitations
- 2020Selecting Electrode Materials and Sequence for Electrochemical Removal of Chlorinated Ethenes in Groundwatercitations
- 2019Characterization of sewage sludge ash and its effect on moisture physics of mortarcitations
- 2019Adobe specimens of Greenlandic fine-grained rock material
- 2019Electrodialytically treated MSWI fly ash use in clay bricks
- 2019Challenges in electrochemical remediation of chlorinated solvents in natural groundwater aquifer settingscitations
- 2018Selenium removal from petroleum refinery wastewater using an electrocoagulation techniquecitations
- 2017The influence of sediment properties and experimental variables on the efficiency of electrodialytic removal of metals from sedimentcitations
- 2017Colour, compressive strength and workability of mortars with an iron rich sewage sludge ashcitations
- 2016Degradation of oil products in a soil from a Russian Barents hot-spot during electrodialytic remediationcitations
- 2016Wood ash used as partly sand and/or cement replacement in mortarcitations
- 2016The necessity of recovering soluble phosphorus from sewage sludge ashes before use in concrete based on concrete setting and workabilitycitations
- 2016Replacement of 5% of OPC by fly ash and APC residues from MSWI with electrodialytic pre-treatment
- 2015Comparison of 2-compartment, 3-compartment and stack designs for electrodialytic removal of heavy metals from harbour sedimentscitations
- 2015Screening of variable importance for optimizing electrodialytic remediation of heavy metals from polluted harbour sedimentscitations
- 2015Ammonium citrate as enhancement for electrodialytic soil remediation and investigation of soil solution during the processcitations
- 2015Multivariate methods for evaluating the efficiency of electrodialytic removal of heavy metals from polluted harbour sedimentscitations
- 2014The Aesthetical quality of SSA-containing mortar and concrete
- 2013Effect of pulse current on acidification and removal of Cu, Cd, and As during suspended electrodialytic soil remediationcitations
- 2012Electrodialytic remediation of suspended soil – Comparison of two different soil fractionscitations
- 2010Numerical Simulations of Electrokinetic Processes Comparing the Use of a Constant Voltage Difference or a Constant Current as Driving Force
- 2009Electrodialytic remediation of harbour sediment in suspension - Evaluation of effects induced by changes in stirring velocity and current density on heavy metal removal and pHcitations
- 2007Electrodialytic extraction of Cd and Cu from sediment from Sisimiut Harbour, Greenlandcitations
- 2006Comparison of electrodialytic removal of Cu from spiked kaolinite, spiked soil and industrially polluted soil
- 2005Acidification of Harbour sediment and removal of heavy metals induced by water splitting in electrodialytic remediation.citations
- 2005Salt Induced Decay of Masonry and Electrokinetic Repair
- 2000Electrodialytic removal of Cu, Cr, and As from chromated copper arsenate-treated timber wastecitations
Places of action
Organizations | Location | People |
---|
article
Comparison of electrodialytic removal of Cu from spiked kaolinite, spiked soil and industrially polluted soil
Abstract
Electrokinetic remediation methods for removal of heavy metals from polluted soils have been subjected for quite intense research during the past years since these methods are well suitable for fine-grained soils where other remediation methods fail. Electrodialytic remediation is an electrokinetic remediation method which is based on applying an electric DC field and the use of ion exchange membranes that ensures the main transport of heavy metals to be out of the pollutes soil. An experimental investigation was made with electrodialytic removal of Cu from spiked kaolinite, spiked soil and industrially polluted soil under the same operational conditions (constant current density 0.2 mA/cm2 and duration 28 days). The results of the present paper show that caution must be taken when generalising results obtained in spiked kaolinite to remediation of industrially polluted soils, as it was shown that the removal rate was higher in kaolinite than in both spiked soil and industrial polluted soil. The duration of spiking was found to be an important factor too, when attempting to relate remediation of spiked soil or kaolinite to remediation of industrially polluted soils. Spiking for 2 days was too short. However, spiking for 30 days resulted in a pattern that was more similar to that of industrially polluted soils with similar compositions both regarding sequential extraction and electrodialytic remediation result, though the remediation still progressed slightly faster in the spiked soil. Generalisation of remediation results to a variety of soil types must on the other hand be done with caution since the remediation results of different industrially polluted soils were very different. In one soil a total of 76% Cu was removed and in another soil no Cu was removed only redistributed within the soil. The factor with the highest influence on removal success was soil pH, which must be low in order to mobilize Cu, and thus the buffering capacity against acidification was the key soil characteristics determining the Cu removal rate.