People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Haberfehlner, Georg
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 20232D and 3D STEM Imaging and Spectroscopy: Applications and Perspectives in View of Novel STEM Infrastructure
- 2023Large mechanical properties enhancement in ceramics through vacancy-mediated unit cell disturbancecitations
- 2023Spectral Tuning of Plasmonic Activity in 3D Nanostructures via High-Precision Nano-Printingcitations
- 2023The challenge with high permittivity acceptors in organic solar cells: a case study with Y-series derivativescitations
- 2022Quantifying Ordering Phenomena at the Atomic Scale in Rare Earth Oxide Ceramics via EELS Elemental Mapping
- 2022Challenges in the characterization of complex nanomaterials with analytical STEM
- 2021Spectroscopic STEM imaging in 2D and 3D
- 2020Study on Ca Segregation toward an Epitaxial Interface between Bismuth Ferrite and Strontium Titanatecitations
- 2020Ca segregation towards an in-plane compressive strain Bismuth Ferrite – Strontium Titanate interface
- 2019In situ real-time annealing of ultrathin vertical Fe nanowires grown by focused electron beam induced depositioncitations
- 2019Analyzing the Nanogranularity of Focused-Electron-Beam-Induced-Deposited Materials by Electron Tomographycitations
- 2016Formation of bimetallic clusters in superfluid helium nanodroplets analysed by atomic resolution electron tomography
- 2011Development of porosimetry techniques for the characterization of plasma-treated porous ultra low-K materialscitations
Places of action
Organizations | Location | People |
---|
document
2D and 3D STEM Imaging and Spectroscopy: Applications and Perspectives in View of Novel STEM Infrastructure
Abstract
Atomic-resolution imaging with a spherical aberration-corrected scanning transmission electron microscope (STEM) is now widely used for the study of interesting, complex material systems. This is owed both to the flexibility in detecting the electrons scattered off from matter, and also to the improved efficiency in collecting spectroscopic signals. To name a few topics: Understanding transport properties (such as charge localization, band versus ballistic transport or the interplay between lattice strain, band structure and charge transport…). Fundamental aspects of spintronics (such as the interplay of structure, chemistry and defects and their role in complex oxides, doped semiconductor materials and other nanostructures,…). Understanding the physics fundamentals of photonic materials (such as excitonic or polaronic coupling, photonic density of states 3D reconstructions, …). In materials science: Improving and understanding defect-engineering (such as the role of dislocations, and remedies to improve mobilities in electro-active materials…) or the understanding of phase formations and transitions (like precipitation formation in metals and alloys, role of coatings and additives of precursor powders used in 3D printed materials…). Overall, the STEM can provide numerical data on some key properties of matter. Recently, the FELMI/ZFE proposed a new instrument, going beyond the standard specifications of common STEMs. Three key characteristics will make this instrument outstanding:<br/>performance, flexibility, and throughput. The talk aims to give an overview of 2D and 3D spectroscopic imaging, by showcasing some highly topical research questions on selected material systems in the light of the future hardware infrastructure.