Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Grant-Jacob, James A.

  • Google
  • 19
  • 48
  • 48

University of Southampton

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (19/19 displayed)

  • 2020Automated 3D labelling of fibroblasts and endothelial cells in SEM-imaged placenta using deep learning6citations
  • 2019Automated 3D labelling of fibroblasts in SEM-imaged placenta using deep learningcitations
  • 2019Image-based monitoring of high-precision laser machining via a convolutional neural networkcitations
  • 2018Yb-doped mixed sesquioxide thin films grown by pulsed laser deposition9citations
  • 2017Laser fabricated nanofoam from polymeric substratescitations
  • 2017Tailoring the refractive index of films during pulsed laser deposition growthcitations
  • 2017Pulsed laser deposition of garnets at a growth rate of 20-microns per hourcitations
  • 2016Laser performance of Yb-doped-garnet thin films grown by pulsed laser depositioncitations
  • 2016Nanopores within 3D-structured gold film for sensing applicationscitations
  • 2016PLD growth of complex waveguide structures for applications in thin-film lasers: a 25 year retrospectivecitations
  • 2016Engineered crystal layers grown by pulsed laser deposition: making bespoke planar gain-media devicescitations
  • 2016Pulsed laser deposited crystalline optical waveguides for thin-film lasing devicescitations
  • 2015Pulsed laser-assisted fabrication of laser gain mediacitations
  • 2015Towards fabrication of 10 W class planar waveguide lasers: analysis of crystalline sesquioxide layers fabricated via pulsed laser depositioncitations
  • 2015Dynamic spatial pulse shaping via a digital micromirror device for patterned laser-induced forward transfer of solid polymer films33citations
  • 2014Pulsed laser deposition of thin films for optical and lasing waveguides (including tricks, tips and techniques to maximize the chances of growing what you actually want)citations
  • 2013Printing of continuous copper lines using LIFT with donor replenishmentcitations
  • 2012Free-standing nanoscale gold pyramidal films with milled nanoporescitations
  • 2009Nanomaterial structure determination using XUV diffractioncitations

Places of action

Chart of shared publication
Mcdonnell, Michael
2 / 2 shared
Blundell, Sophie
2 / 2 shared
Mills, Benjamin
7 / 12 shared
Xie, Yunhui
3 / 3 shared
Etter, Olivia
2 / 2 shared
Eason, Robert W.
16 / 65 shared
Mackay, Benita
3 / 4 shared
Praeger, Matthew
2 / 18 shared
Lewis, Rohan
2 / 2 shared
Heath, Daniel
2 / 3 shared
Prentice, Jake J.
1 / 3 shared
Mackenzie, Jacob I.
10 / 18 shared
Shepherd, David P.
10 / 24 shared
Beecher, Stephen
5 / 5 shared
Hua, Ping
4 / 9 shared
Melvin, Tracy
2 / 2 shared
Carpignano, Francesca
1 / 1 shared
Boden, Stuart
1 / 8 shared
Horak, Peter
1 / 23 shared
Pechstedt, Katrin
1 / 1 shared
Noual, Adnane
1 / 5 shared
Silva, Gloria
1 / 1 shared
Brocklesby, William
3 / 5 shared
Anderson, Andrew A.
1 / 1 shared
Sloyan, Katherine
2 / 2 shared
Grivas, Christos
1 / 3 shared
Choudhary, Amol
1 / 3 shared
Barrington, S. J.
1 / 2 shared
May-Smith, Timothy
1 / 1 shared
Parsonage, Tina
2 / 2 shared
Beecher, Stephen J.
1 / 1 shared
Choudhary, A.
3 / 9 shared
Parsonage, T. L.
2 / 4 shared
Hua, P.
3 / 3 shared
Beecher, S.
1 / 1 shared
Parsonage, T.
1 / 2 shared
Beecher, S. J.
2 / 2 shared
Heath, Daniel J.
1 / 1 shared
Feinäugle, Matthias
1 / 1 shared
Hoppenbrouwers, M. B.
1 / 2 shared
Oosterhuis, G.
1 / 2 shared
Sones, Collin
1 / 6 shared
Feinäugle, M.
1 / 6 shared
Butcher, Tom
1 / 1 shared
Chapman, Richard
1 / 2 shared
Rogers, Edward T. F.
1 / 2 shared
Stebbings, Sarah
1 / 1 shared
Frey, Jeremy G.
1 / 1 shared
Chart of publication period
2020
2019
2018
2017
2016
2015
2014
2013
2012
2009

Co-Authors (by relevance)

  • Mcdonnell, Michael
  • Blundell, Sophie
  • Mills, Benjamin
  • Xie, Yunhui
  • Etter, Olivia
  • Eason, Robert W.
  • Mackay, Benita
  • Praeger, Matthew
  • Lewis, Rohan
  • Heath, Daniel
  • Prentice, Jake J.
  • Mackenzie, Jacob I.
  • Shepherd, David P.
  • Beecher, Stephen
  • Hua, Ping
  • Melvin, Tracy
  • Carpignano, Francesca
  • Boden, Stuart
  • Horak, Peter
  • Pechstedt, Katrin
  • Noual, Adnane
  • Silva, Gloria
  • Brocklesby, William
  • Anderson, Andrew A.
  • Sloyan, Katherine
  • Grivas, Christos
  • Choudhary, Amol
  • Barrington, S. J.
  • May-Smith, Timothy
  • Parsonage, Tina
  • Beecher, Stephen J.
  • Choudhary, A.
  • Parsonage, T. L.
  • Hua, P.
  • Beecher, S.
  • Parsonage, T.
  • Beecher, S. J.
  • Heath, Daniel J.
  • Feinäugle, Matthias
  • Hoppenbrouwers, M. B.
  • Oosterhuis, G.
  • Sones, Collin
  • Feinäugle, M.
  • Butcher, Tom
  • Chapman, Richard
  • Rogers, Edward T. F.
  • Stebbings, Sarah
  • Frey, Jeremy G.
OrganizationsLocationPeople

conferencepaper

Pulsed laser deposition of garnets at a growth rate of 20-microns per hour

  • Grant-Jacob, James A.
  • Mackenzie, Jacob I.
  • Eason, Robert W.
  • Beecher, Stephen
  • Shepherd, David P.
Abstract

To date, pulsed laser deposition (PLD) has been used for depositing many different materials under the classes of metals, semiconductors, and dielectrics. For the latter, PLD is advantageous for fabrication of crystalline layers that are suitable for high quality planar waveguides. In previous work, we showed PLD can be exploited for fabricating garnet-crystal layers, specifically Yb:YAG, with optical quality close to Czochralski grown material [1]. Typical growth rates are slow at < 1 microns per hour but some progress has been made increasing depositions using a pulsed laser operating at a repetition rate of 20 Hz [2]. Here, we report a ~ 5 x increase in growth rate from previous work, demonstrating that YGG and YAG can be grown with excellent crystal quality at deposition rates approaching 20-microns per hour by using an excimer laser operating at a repetition rate of 100 Hz. This surprising result demonstrates the unique capability of PLD at 100 Hz, for upscaling deposition speeds to a rate that is industrially relevant for thick films. 1. Stephen J. Beecher et al. Proc. SPIE 9726, Solid State Lasers XXV: Technology and Devices, 97261Z (March 16, 2016) 2. J.A. Grant-Jacob et al. Opt. Mater. Express 6, 91-96 (2016)

Topics
  • impedance spectroscopy
  • semiconductor
  • pulsed laser deposition