People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Grant-Jacob, James A.
University of Southampton
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2020Automated 3D labelling of fibroblasts and endothelial cells in SEM-imaged placenta using deep learningcitations
- 2019Automated 3D labelling of fibroblasts in SEM-imaged placenta using deep learning
- 2019Image-based monitoring of high-precision laser machining via a convolutional neural network
- 2018Yb-doped mixed sesquioxide thin films grown by pulsed laser depositioncitations
- 2017Laser fabricated nanofoam from polymeric substrates
- 2017Tailoring the refractive index of films during pulsed laser deposition growth
- 2017Pulsed laser deposition of garnets at a growth rate of 20-microns per hour
- 2016Laser performance of Yb-doped-garnet thin films grown by pulsed laser deposition
- 2016Nanopores within 3D-structured gold film for sensing applications
- 2016PLD growth of complex waveguide structures for applications in thin-film lasers: a 25 year retrospective
- 2016Engineered crystal layers grown by pulsed laser deposition: making bespoke planar gain-media devices
- 2016Pulsed laser deposited crystalline optical waveguides for thin-film lasing devices
- 2015Pulsed laser-assisted fabrication of laser gain media
- 2015Towards fabrication of 10 W class planar waveguide lasers: analysis of crystalline sesquioxide layers fabricated via pulsed laser deposition
- 2015Dynamic spatial pulse shaping via a digital micromirror device for patterned laser-induced forward transfer of solid polymer filmscitations
- 2014Pulsed laser deposition of thin films for optical and lasing waveguides (including tricks, tips and techniques to maximize the chances of growing what you actually want)
- 2013Printing of continuous copper lines using LIFT with donor replenishment
- 2012Free-standing nanoscale gold pyramidal films with milled nanopores
- 2009Nanomaterial structure determination using XUV diffraction
Places of action
Organizations | Location | People |
---|
conferencepaper
Pulsed laser deposition of garnets at a growth rate of 20-microns per hour
Abstract
To date, pulsed laser deposition (PLD) has been used for depositing many different materials under the classes of metals, semiconductors, and dielectrics. For the latter, PLD is advantageous for fabrication of crystalline layers that are suitable for high quality planar waveguides. In previous work, we showed PLD can be exploited for fabricating garnet-crystal layers, specifically Yb:YAG, with optical quality close to Czochralski grown material [1]. Typical growth rates are slow at < 1 microns per hour but some progress has been made increasing depositions using a pulsed laser operating at a repetition rate of 20 Hz [2]. Here, we report a ~ 5 x increase in growth rate from previous work, demonstrating that YGG and YAG can be grown with excellent crystal quality at deposition rates approaching 20-microns per hour by using an excimer laser operating at a repetition rate of 100 Hz. This surprising result demonstrates the unique capability of PLD at 100 Hz, for upscaling deposition speeds to a rate that is industrially relevant for thick films. 1. Stephen J. Beecher et al. Proc. SPIE 9726, Solid State Lasers XXV: Technology and Devices, 97261Z (March 16, 2016) 2. J.A. Grant-Jacob et al. Opt. Mater. Express 6, 91-96 (2016)