Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kang, Youn-Bae

  • Google
  • 9
  • 21
  • 148

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (9/9 displayed)

  • 2024In situ study and assessment of the phosphorus-induced solute drag effect on the grain boundary mobility of austenite11citations
  • 2024Experimental investigation and computational thermodynamics of the quaternary system Fe-C-Mn-Scitations
  • 2024On the Role of Tramp Elements for Surface Defect Formation in Continuous Casting of Steel3citations
  • 2023Grain boundary mobility of γ-Fe in high-purity iron during isothermal annealing20citations
  • 2023Thermodynamic modeling of the Fe-Sn system including an experimental re-assessment of the liquid miscibility gap11citations
  • 2023Decomposition of γ-Fe in 0.4C-1.8Si-2.8Mn-0.5Al steel during a continuous cooling process: A comparative study using in-situ HT-LSCM, DSC and dilatometry14citations
  • 2023Impurities and tramp elements in steel: Thermodynamic aspects and the application to solidification processescitations
  • 2020Experimental Study of High Temperature Phase Equilibria in the Iron-Rich Part of the Fe-P and Fe-C-P Systems26citations
  • 2016Study on Oxide Inclusion Dissolution in Secondary Steelmaking Slags using High Temperature Confocal Scanning Laser Microscopy63citations

Places of action

Chart of shared publication
Kern, Maximilian
4 / 5 shared
Bernhard, Christian
8 / 53 shared
Bernhard, Michael Christian
8 / 18 shared
Park, Won-Bum
3 / 3 shared
Littringer, Robert
1 / 1 shared
Presoly, Peter
5 / 25 shared
Winkler, Johann
1 / 2 shared
Gaiser, Georg
1 / 4 shared
Liu, Man
1 / 1 shared
Walek, Josef
1 / 2 shared
Kawulokova, Monika
1 / 1 shared
Smetana, Bedřich
1 / 14 shared
Xu, Guang
1 / 4 shared
Tkadleckova, Marketa
1 / 1 shared
Zla, Simona
1 / 1 shared
Ilie, Sergiu
1 / 18 shared
Fuchs, Nora
1 / 7 shared
Feichtinger, Stefan
1 / 1 shared
Goriupp, Jürgen
1 / 1 shared
Michelic, Susanne
1 / 27 shared
Schenk, Johannes
1 / 46 shared
Chart of publication period
2024
2023
2020
2016

Co-Authors (by relevance)

  • Kern, Maximilian
  • Bernhard, Christian
  • Bernhard, Michael Christian
  • Park, Won-Bum
  • Littringer, Robert
  • Presoly, Peter
  • Winkler, Johann
  • Gaiser, Georg
  • Liu, Man
  • Walek, Josef
  • Kawulokova, Monika
  • Smetana, Bedřich
  • Xu, Guang
  • Tkadleckova, Marketa
  • Zla, Simona
  • Ilie, Sergiu
  • Fuchs, Nora
  • Feichtinger, Stefan
  • Goriupp, Jürgen
  • Michelic, Susanne
  • Schenk, Johannes
OrganizationsLocationPeople

document

Experimental investigation and computational thermodynamics of the quaternary system Fe-C-Mn-S

  • Park, Won-Bum
  • Kang, Youn-Bae
  • Littringer, Robert
  • Bernhard, Christian
  • Bernhard, Michael Christian
  • Presoly, Peter
Abstract

During the reduction of iron ores, substantial amounts of S, originating from the coke, dissolve in the molten iron. S poses several problems during the casting and processing of steels, such as hot tearing or surface defects, respectively. Residual amounts of S are typically bound by adding Mn to the steel to avoid the formation of low-melting phases. Mn is also an important alloying element for large variety of steel grades. To track the steel quality during the casting process, online quality prediction systems are currently under development in numerous steel plants. Thermodynamic data of the steel grade are combined with solidification calculations and kinetic models to describe the casting process as a function of the casting parameters, whereby the thermodynamic information is obtained from the CALPHAD approach.<br/>In the present work, experiments in the systems Fe-Mn and Fe-Mn-S with very low amount of C (~ 150 ppm) were performed using Differential Scanning Calorimetry (DSC) and Differential Thermal Analysis (DTA). The Fe-Mn-Clow phase diagram at high temperatures was experimentally reconstructed up to 40 mass pct. Mn. [1] Previous thermodynamic assessments [2,3] showed noticeable deviation from the measured peritectic phase equilibria, which required further investigation and re-optimization of the thermodynamic database. Hence, a CALPHAD-type thermodynamic modeling of the Fe-Mn and Fe-Mn-C system using FactSage thermochemical software [4] was performed to improve the prediction of solid/liquid phase equilibrium temperatures. For the liquid phase, the Modified Quasichemical Model (MQM) was used, solid solutions were described by the Compound Energy Formalism (CEF) and several compounds with constant composition were treated as stoichiometric. In the second part, the experimental and computational approach is combined and applied to the ternary Fe-Mn-S system, as shown exemplary in Figure 1 (a). Two isopleth sections of 0.5 and 2.0 mass pct. Mn with up to 0.3 mass pct. S were studied. <br/>The DSC technique enabled also to analyze the dissolution of manganese sulfides (Mn,Fe)S, as can be seen in Figure 1 (b), which was additionally in situ by high temperature laser scanning confocal microscopy (HT-LSCM). Hence, the proper evaluation of the DSC signals could be confirmed. Though a significant improvement was obtained for calculating the Fe-C-Mn system, the previous evaluation of the Fe-Mn-S system, which in this case was selected from the studies of Kang and coworkers [2,3], already led to excellent results.<br/><br/>References:<br/>[1] Presoly, P., private communication, Montanuniversitaet Leoben, 2023<br/>[2] Y.-B. Kang, Critical evaluations and thermodynamic optimizations of the Mn–S and the Fe–Mn–S systems. Calphad, 34 (2010), 2, pp. 232–244.<br/>[3] M.-S. Kim and Y.-B. Kang, Thermodynamic Modeling of the Fe-Mn-C and the Fe-Mn-Al Systems Using the Modified Quasichemical Model for Liquid Phase. Journal of Phase Equilibria and Diffusion, 36 (2015), 5, pp. 453–470.<br/>[4] C.W. Bale et al., FactSage thermochemical software and databases, 2010–2016. Calphad, 54 (2016), pp. 35–53.

Topics
  • impedance spectroscopy
  • surface
  • compound
  • experiment
  • steel
  • defect
  • differential scanning calorimetry
  • casting
  • iron
  • phase diagram
  • Manganese
  • liquid phase
  • solidification
  • differential thermal analysis
  • confocal microscopy
  • CALPHAD