Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Engelhard, Mark H.

  • Google
  • 4
  • 24
  • 115

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2020Hole-Trapping-Induced Stabilization of Ni4 + in SrNiO3 /LaFeO3 Superlattices.34citations
  • 2012Inhibition of trace element release during Fe(II)-activated recrystallization of Al-, Cr-, and Sn-substituted goethite and hematite69citations
  • 2006Pressure-temperature dependence of nanowire formation in the arsenic-sulfur systemcitations
  • 2005Surface Electronic Properties and Site-Specific Laser Desorption Processes of Highly Structured Nanoporous MgO Thin Films12citations

Places of action

Chart of shared publication
Bowden, Mark E.
1 / 5 shared
Spurgeon, Steven R.
1 / 5 shared
Yang, Zhenzhong
1 / 1 shared
Freeland, John W.
1 / 5 shared
Sushko, Peter V.
1 / 4 shared
Du, Yingge
1 / 2 shared
Samarakoon, Widitha
1 / 1 shared
Chambers, Scott A.
1 / 6 shared
Feng, Zhenxing
1 / 1 shared
Zhou, Hua
1 / 5 shared
Catalano, Jeffrey G.
1 / 2 shared
Rapponotti, Brett W.
1 / 1 shared
Bachman, Jonathan E.
1 / 1 shared
Scherer, Michelle M.
1 / 1 shared
Olmstead, Juliana D.
1 / 1 shared
Sundaram, S. K.
1 / 11 shared
Riley, Brian J.
1 / 14 shared
Williford, Rick E.
1 / 1 shared
Johnson, Bradley R.
1 / 18 shared
Henyk, Matthias
1 / 1 shared
Dickinson, J. T.
1 / 4 shared
Joly, Alan G.
1 / 16 shared
Hess, Wayne P.
1 / 16 shared
Beck, Kenneth M.
1 / 17 shared
Chart of publication period
2020
2012
2006
2005

Co-Authors (by relevance)

  • Bowden, Mark E.
  • Spurgeon, Steven R.
  • Yang, Zhenzhong
  • Freeland, John W.
  • Sushko, Peter V.
  • Du, Yingge
  • Samarakoon, Widitha
  • Chambers, Scott A.
  • Feng, Zhenxing
  • Zhou, Hua
  • Catalano, Jeffrey G.
  • Rapponotti, Brett W.
  • Bachman, Jonathan E.
  • Scherer, Michelle M.
  • Olmstead, Juliana D.
  • Sundaram, S. K.
  • Riley, Brian J.
  • Williford, Rick E.
  • Johnson, Bradley R.
  • Henyk, Matthias
  • Dickinson, J. T.
  • Joly, Alan G.
  • Hess, Wayne P.
  • Beck, Kenneth M.
OrganizationsLocationPeople

article

Pressure-temperature dependence of nanowire formation in the arsenic-sulfur system

  • Olmstead, Juliana D.
  • Engelhard, Mark H.
  • Sundaram, S. K.
  • Riley, Brian J.
  • Williford, Rick E.
  • Johnson, Bradley R.
Abstract

Nanowire Formation in Arsenic TrisulfideBrian J. Riley, S.K. Sundaram*, Bradley R. Johnson, Mark Engelhard Pacific Northwest National Laboratory, PO Box 999, Richland, WA 99352 * Corresponding author: Phone: 509-373-6665; Fax: 509-376-3108, E-mail: sk.Sundaram@pnl.gov Abstract:Arsenic trisulfide (As2S3) nanowires, nano-droplets, and micro-islands were synthesized on fused silica substrates, using a sublimation-condensation process at reduced pressures (70 mtorr – 70 torr) in a sealed ampoule.Microstructural control of the deposited thin film was achieved by controlling initial pressure, substrate temperature and substrate surface treatment.Microstructures were characterized using scanning electron microscopy (SEM), and energy dispersive spectrometry (EDS).Surface topography and chemistry of the substrates were characterized using x-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM).Semi-quantitative image analysis and basic curve-fitting were used to develop empirical models to mathematically describe the variation of microstructure as a function of initial pressure and substrate temperature and map out the regions of different microstructures in P-T space.Thermodyamic properties (available from literature) of this system are also incorporated in this map.Nanowires of an amorphous, transparent in visible-LWIR region, semi-conducting material, like As2S3, provide new opportunities for the development of novel nano-photonic and electronic devices.Additionally, this system provides an excellent opportunity to model (and control) microstructure development from nanometer to micron scales in a physical vapor deposition process, which is of great value to nanoscience and nanotechnology in general.

Topics
  • impedance spectroscopy
  • microstructure
  • surface
  • amorphous
  • scanning electron microscopy
  • thin film
  • x-ray photoelectron spectroscopy
  • atomic force microscopy
  • physical vapor deposition
  • Energy-dispersive X-ray spectroscopy
  • spectrometry
  • Arsenic