People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Johnson, Bradley R.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2019Solid Secondary Waste Immobilization in Cementitious Waste Forms at the Hanford Site - 19081
- 2014Preliminary Phase Field Computational Model Development
- 2013Sublimation-Condensation of Multiscale Tellurium Structurescitations
- 2009Electromagnetic material changes for remote detection and monitoring: a feasibility study: Progress report
- 2009DC Ionization Conductivity of Amorphous Semiconductors for Radiation Detection Applicationscitations
- 2008ASGRAD FY07 Annual Report
- 2008FY 2008 Infrared Photonics Final Report
- 2007Engineered SMR catalysts based on hydrothermally stable, porous, ceramic supports for microchannel reactorscitations
- 2007FY06 Annual Report: Amorphous Semiconductors for Gamma Radiation Detection (ASGRAD)
- 2007Differential etching of chalcogenides for infrared photonic waveguide structurescitations
- 2006Summary of Chalcogenide Glass Processing: Wet-Etching and Photolithography
- 2006Pressure-temperature dependence of nanowire formation in the arsenic-sulfur system
- 2005Microstructural and Microchemical Characterization of Primary-Side Cracks in an Alloy 600 Nozzle Head Penetration and its Alloy 182 J-Weld from the Davis-Besse Reactor Vessel
- 2005FY 2005 Miniature Spherical Retroreflectors Final Report
- 2005FY 2005 Infrared Photonics Final Report
- 2004Laser Writing in Arsenic Trisulfide Glass
- 2004FY 2004 Infrared Photonics Final Report
- 2004Chalcogenide glasses and structures for quantum sensing
Places of action
Organizations | Location | People |
---|
article
Pressure-temperature dependence of nanowire formation in the arsenic-sulfur system
Abstract
Nanowire Formation in Arsenic TrisulfideBrian J. Riley, S.K. Sundaram*, Bradley R. Johnson, Mark Engelhard Pacific Northwest National Laboratory, PO Box 999, Richland, WA 99352 * Corresponding author: Phone: 509-373-6665; Fax: 509-376-3108, E-mail: sk.Sundaram@pnl.gov Abstract:Arsenic trisulfide (As2S3) nanowires, nano-droplets, and micro-islands were synthesized on fused silica substrates, using a sublimation-condensation process at reduced pressures (70 mtorr – 70 torr) in a sealed ampoule.Microstructural control of the deposited thin film was achieved by controlling initial pressure, substrate temperature and substrate surface treatment.Microstructures were characterized using scanning electron microscopy (SEM), and energy dispersive spectrometry (EDS).Surface topography and chemistry of the substrates were characterized using x-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM).Semi-quantitative image analysis and basic curve-fitting were used to develop empirical models to mathematically describe the variation of microstructure as a function of initial pressure and substrate temperature and map out the regions of different microstructures in P-T space.Thermodyamic properties (available from literature) of this system are also incorporated in this map.Nanowires of an amorphous, transparent in visible-LWIR region, semi-conducting material, like As2S3, provide new opportunities for the development of novel nano-photonic and electronic devices.Additionally, this system provides an excellent opportunity to model (and control) microstructure development from nanometer to micron scales in a physical vapor deposition process, which is of great value to nanoscience and nanotechnology in general.