People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ilie, Sergiu
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2024Investigating the Origin of Non-Metallic Inclusions in Ti-Stabilized ULC Steels Using Different Tracing Techniquescitations
- 2023Different Approaches to Trace the Source of Non-Metallic Inclusions in Steel
- 2023Application of tracing techniques to determine the source of alumina inclusions in the clogging layer of Ti-stabilized ULC steels
- 2023Classification of peritectic steels by experimental methods, computational thermodynamics and plant data: An Overview
- 2023Impurities and tramp elements in steel: Thermodynamic aspects and the application to solidification processes
- 2023Comparison of tracing deoxidation products with rare earth elements in the industry and on a laboratory scale
- 2022High temperature thermodynamics of the Fe-C-Mn system; new experimental data for the Fe-C-10 and 20 wt.-% Mn system
- 2022Different Approaches to Trace the Source of Non-Metallic Inclusions in Steelcitations
- 2022A Near-Process 2D Heat-Transfer Model for Continuous Slab Casting of Steelcitations
- 2022Selected metallurgical models for computationally efficient prediction of quality-related issues in continuous slab casting of steel
- 2022Thermomechanical and Microstructural Analysis of the Influence of B- and Ti-Content on the Hot Ductility Behavior of Microalloyed Steelscitations
- 2021Investigations on hot tearing in a continuous slab caster: Numerical modelling combined with analysis of plant results
- 2020Utilization of Experimental Data as Boundary Conditions for the Solidification Model Tempsimu-3Dcitations
- 2019Investigation of water droplet impingement under conditions of the secondary cooling zone of a continuous caster
- 2019High precious phase diagrams – a roadmap for a successful casting processing
- 2016HT-LSCM - A valuable tool for surface microstructure investigations
- 2012Hot deformation behaviour of low alloyed steelcitations
- 2012Influence of Strain Rate on Hot Ductility of a V-Microalloyed Steel Slabcitations
Places of action
Organizations | Location | People |
---|
document
Classification of peritectic steels by experimental methods, computational thermodynamics and plant data: An Overview
Abstract
Modern steel grades are subjected to constant development to perform weight reduction, energy-saving, and automobile safety performance. In the last decades, high strength and ductile steels were developed with increasing quantities of silicon and manganese. Apart from the research on these new steels' material and product properties, the knowledge about the production process, particularly the continuous casting (CC) and the initial solidification in a water-cooled copper mould is of significant importance. In this regard, the high-temperature phase transformations and the thermodynamic properties play a particular role. <br/>An efficient pre-identification of hypo-peritectic steel grades by experiments or thermodynamics is relevant to ensure surface quality, productivity, and operational safety in the casting process. The potential of different laboratory experimental methods and thermodynamic approaches is critical evaluated in comparison with operational experience from voestalpine Stahl Linz. <br/>Since process data in the continuous casting process often overlap with different operating influences (e.g. casting speed changes, width adjustments…), a new approach is presented to identify the process behaviour of peritectic steels without additional effects. For this purpose, operating data from the mould monitoring were processed statistically, and only data areas with a steady-state casting length of more than 100 m were used for further consideration. Using this data preparation method, the peritectic area in the continuous casting process can be clearly described. Statistically prepared process data and experimentally verified thermodynamic data are the basis for the development and validation of demanding process models.