Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Tischler, Guido

  • Google
  • 2
  • 10
  • 8

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023Hot tear prediction in large sized high alloyed turbine steel parts - experimental based calibration of mechanical data and model validationcitations
  • 2013Investigations on susceptibility to intergranular corrosion of thermo-mechanically rolled corrosion-resistant materials 316L and Alloy 8258citations

Places of action

Chart of shared publication
Klinkhammer, Jörg
1 / 1 shared
Bernhard, Christian
1 / 53 shared
Winkler, Johann
1 / 2 shared
Thorborg, Jesper
1 / 26 shared
Bernhard, Michael Christian
1 / 18 shared
Hanus, Reinhold
1 / 1 shared
Mori, Gregor
1 / 13 shared
Mitsche, Stefan
1 / 40 shared
Grill, Rainer
1 / 1 shared
Prohaska, Michael
1 / 1 shared
Chart of publication period
2023
2013

Co-Authors (by relevance)

  • Klinkhammer, Jörg
  • Bernhard, Christian
  • Winkler, Johann
  • Thorborg, Jesper
  • Bernhard, Michael Christian
  • Hanus, Reinhold
  • Mori, Gregor
  • Mitsche, Stefan
  • Grill, Rainer
  • Prohaska, Michael
OrganizationsLocationPeople

document

Hot tear prediction in large sized high alloyed turbine steel parts - experimental based calibration of mechanical data and model validation

  • Klinkhammer, Jörg
  • Bernhard, Christian
  • Winkler, Johann
  • Thorborg, Jesper
  • Bernhard, Michael Christian
  • Tischler, Guido
  • Hanus, Reinhold
Abstract

The main defects in heavy steel castings are related to hot tear formation during <br/>solidification. Depending on the steel grade, design, and local solidification conditions, it is possible to predict regions with higher risk of hot tear formation during the casting process. However, steels containing Boron show more complex crack and defect patterns compared to common steel casting alloys. The mechanisms behind the Boron induced hot tearing is investigated in this work to understand the influence of Boron enrichment during solidification and the influence on hot tearing. The experimental work includes the investigation of phase diagrams and the corresponding fractions of the solid and liquid phases depending on temperature using thermal analysis e.g. DSC and HT-LSCM. The hot tearing sensitivity and mechanical properties during solidification are obtained in the Submerged Split Chill Test, SSCT. In addition IMC-B 3-point bending tests are performed to determine high-temperature material properties in the solid state. The work is part of a research project where the final goal is to improve the hot tear predictions based on experimental work and carry out a benchmark simulation of a real sized casting and use it to show the agreement between the numerical results and extensive non-destructive testing from industrial observations.

Topics
  • impedance spectroscopy
  • simulation
  • crack
  • steel
  • bending flexural test
  • differential scanning calorimetry
  • casting
  • Boron
  • phase diagram
  • liquid phase
  • solidification