Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Forest, Laurent

  • Google
  • 12
  • 58
  • 103

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (12/12 displayed)

  • 2020Realistic Model to Predict the Macrostructure of GTAW Welds for the Simulation of Ultrasonic Non destructive Testing4citations
  • 2020Test blanket modules (ITER) and breeding blanket (DEMO): History of major fabrication technologies development of HCLL and HCPB and status20citations
  • 2020Status of the EU DEMO breeding blanket manufacturing R&D activities18citations
  • 2020Status of the EU DEMO breeding blanket manufacturing R&D activities18citations
  • 2019Towards a model for predicting the macrostructure of multipass GTAW weld of austenitic stainless steelcitations
  • 2018Status of the EU DEMO breeding blanket manufacturing RetD activitiescitations
  • 2018The European ITER Test Blanket Modules: Fabrication R&D progress for HCLL and HCPB11citations
  • 2017Assessment of HCLL-TBM optimum welding sequence scenario to minimize welding distortions6citations
  • 2016The European ITER test blanket modules: Progress in development of fabrication technologies towards standardization9citations
  • 2016Assessment of HCLL-TBM optimum welding sequence scenario to minimize welding distortionscitations
  • 2015The European ITER Test Blanket Modules: Current status of fabrication technologies development and a way forward17citations
  • 2013Numerical Simulation of Hot Cracking Testscitations

Places of action

Chart of shared publication
Gueudré, Cécile
2 / 7 shared
Ploix, Marie-Aude
2 / 6 shared
Corneloup, Gilles
2 / 4 shared
Marsac, Quentin
2 / 2 shared
Baqué, François
1 / 1 shared
Neuberger, Heiko
5 / 8 shared
Boccaccini, Lorenzo Virgilio
3 / 3 shared
Zmitko, Milan
5 / 5 shared
Pascal, Serge
1 / 4 shared
Thomas, Noel
3 / 3 shared
Cogneau, Laurence
3 / 3 shared
Rey, Jörg
4 / 5 shared
Puma, Antonella Li
3 / 3 shared
Tosi, Jérôme
3 / 3 shared
Fondant, Gilles
2 / 2 shared
Aktaa, Jarir
2 / 27 shared
Savoldi, Laura
2 / 4 shared
Sornin, Denis
2 / 26 shared
Eugen-Ghidersa, Bradut
2 / 2 shared
Namburi, Hygreeva
2 / 5 shared
Froio, Antonio
2 / 2 shared
Emmerich, Thomas
2 / 6 shared
Vala, Ladislav
2 / 2 shared
Rey, Jorg
1 / 1 shared
Li Puma, Antonella
1 / 1 shared
Baque, François
1 / 1 shared
Vetele, A. L.
1 / 1 shared
Robidet, R.
1 / 1 shared
Aktaa, J.
1 / 27 shared
Rey, J.
1 / 11 shared
Emmerich, T.
1 / 2 shared
Froio, A.
1 / 2 shared
Eugen-Ghidersa, B.
1 / 2 shared
Namburi, H.
1 / 2 shared
Boccaccini, L. V.
1 / 2 shared
Neuberger, H.
1 / 10 shared
Puma, A. Li
1 / 1 shared
Sornin, D.
1 / 11 shared
Savoldi, L.
1 / 2 shared
Vala, L.
1 / 3 shared
Fondant, G.
1 / 2 shared
Doyen, Olivier
2 / 4 shared
Simon-Perret, Melchior
1 / 1 shared
Rizzo, Nicola
1 / 1 shared
Poitevin, Yves
2 / 3 shared
Thomas, Noël
2 / 2 shared
Lipuma, Antonella
1 / 1 shared
Doyen, O.
1 / 2 shared
Zmitko, M.
1 / 2 shared
Tosi, J.
1 / 1 shared
Thomas, N.
1 / 8 shared
Rizzo, N.
1 / 1 shared
Bucci, Philippe
1 / 1 shared
Galabert, Jose
1 / 1 shared
Fandeur, Olivier
1 / 11 shared
Le, M.
1 / 1 shared
Pilvin, Philippe
1 / 13 shared
Asserin, Olivier
1 / 7 shared
Chart of publication period
2020
2019
2018
2017
2016
2015
2013

Co-Authors (by relevance)

  • Gueudré, Cécile
  • Ploix, Marie-Aude
  • Corneloup, Gilles
  • Marsac, Quentin
  • Baqué, François
  • Neuberger, Heiko
  • Boccaccini, Lorenzo Virgilio
  • Zmitko, Milan
  • Pascal, Serge
  • Thomas, Noel
  • Cogneau, Laurence
  • Rey, Jörg
  • Puma, Antonella Li
  • Tosi, Jérôme
  • Fondant, Gilles
  • Aktaa, Jarir
  • Savoldi, Laura
  • Sornin, Denis
  • Eugen-Ghidersa, Bradut
  • Namburi, Hygreeva
  • Froio, Antonio
  • Emmerich, Thomas
  • Vala, Ladislav
  • Rey, Jorg
  • Li Puma, Antonella
  • Baque, François
  • Vetele, A. L.
  • Robidet, R.
  • Aktaa, J.
  • Rey, J.
  • Emmerich, T.
  • Froio, A.
  • Eugen-Ghidersa, B.
  • Namburi, H.
  • Boccaccini, L. V.
  • Neuberger, H.
  • Puma, A. Li
  • Sornin, D.
  • Savoldi, L.
  • Vala, L.
  • Fondant, G.
  • Doyen, Olivier
  • Simon-Perret, Melchior
  • Rizzo, Nicola
  • Poitevin, Yves
  • Thomas, Noël
  • Lipuma, Antonella
  • Doyen, O.
  • Zmitko, M.
  • Tosi, J.
  • Thomas, N.
  • Rizzo, N.
  • Bucci, Philippe
  • Galabert, Jose
  • Fandeur, Olivier
  • Le, M.
  • Pilvin, Philippe
  • Asserin, Olivier
OrganizationsLocationPeople

conferencepaper

Numerical Simulation of Hot Cracking Tests

  • Fandeur, Olivier
  • Le, M.
  • Forest, Laurent
  • Pilvin, Philippe
  • Asserin, Olivier
Abstract

One of the main nuclear materials is the austenitic stainless steels, which have good ductility and toughness, high thermal expansion coefficients and a thermal conductivity lower than that of martensitic or ferritic steels. The 316L(N) austenitic stainless steel (X2CrNiMo17-12-2 with controlled nitrogen) is evaluated for structures such as the vessels, which are steel enclosures surrounding the reactor core and its assemblies, in fourth generation nuclear systems. The RCC-MR code, which is used as a frame of reference in the manufacture of SFR (Sodium Fast Reactor concept), recommends the use of austenoferritic filler material for the welding of 316L(N) steel. These recommendations derive from past experience of working with fast neutron reactors (Phenix and Superphenix). In order to guarantee long-term properties at high temperatures, an austenoferritic and an austenitic filler metals are evaluated as filler metals. However, these materials are susceptible to hot cracking. Therefore, a study is conducted to ensure their weldability. The purpose of this work is to evaluate the susceptibility to hot cracking of the studied materials and to present a methodology applied to define a criterion called “laboratory” for each material and its transfer to a structure test. The relative susceptibility to hot cracking of these materials was evaluated using four tests: the Varestraint, the Gleeble, the trapezoid and the skew tests. Numerical simulation using Cast3M code and Sidolo software of these four tests were investigated in order to survey behavior laws of each studied material and solidification cracking thermomechanical criteria intrinsic to the materials. Some test and simulation results as well as hot cracking susceptibility ranking are presented and the transferability to real component welds of hot cracking criteria is discussed.

Topics
  • impedance spectroscopy
  • stainless steel
  • simulation
  • Nitrogen
  • Sodium
  • thermal expansion
  • susceptibility
  • ductility
  • thermal conductivity
  • solidification