Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Assimi, T. El

  • Google
  • 1
  • 9
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2004Microstructuration of Silicon Surfaces Using Nanoporous Gold Electrodescitations

Places of action

Chart of shared publication
Lachaume, Raphaël
1 / 11 shared
Harari, Joseph
1 / 12 shared
Magnin, V.
1 / 4 shared
Cachet-Vivier, C.
1 / 2 shared
Gall, Sylvain Le
1 / 6 shared
Torralba, E.
1 / 3 shared
Vilcot, Jean-Pierre
1 / 18 shared
Bastide, Stéphane
1 / 16 shared
Halbwax, Mathieu
1 / 19 shared
Chart of publication period
2004

Co-Authors (by relevance)

  • Lachaume, Raphaël
  • Harari, Joseph
  • Magnin, V.
  • Cachet-Vivier, C.
  • Gall, Sylvain Le
  • Torralba, E.
  • Vilcot, Jean-Pierre
  • Bastide, Stéphane
  • Halbwax, Mathieu
OrganizationsLocationPeople

document

Microstructuration of Silicon Surfaces Using Nanoporous Gold Electrodes

  • Lachaume, Raphaël
  • Harari, Joseph
  • Magnin, V.
  • Cachet-Vivier, C.
  • Gall, Sylvain Le
  • Torralba, E.
  • Assimi, T. El
  • Vilcot, Jean-Pierre
  • Bastide, Stéphane
  • Halbwax, Mathieu
Abstract

Etching is a key process in the fabrication of silicon (Si) microstructures that are essential for several component families used in microelectronics, photonics and photovoltaics, among others. A large variety of microstructuring technologies exists nowadays (e.g. wet/dry etchings based on photo/electron beam lithography patterning). Their remarkable efficacy comes at the expense of several lithography (masking) /etching steps that are not suitable for all industries, i.e. when reduced cost and manufacturing time are key aspects (e.g. Si solar cells manufacturing). Hence, the development of a maskless technique with direct imprinting of patterns would dramatically simplify the fabrication process. However, eliminating the use of masks and move towards micromachining techniques has turned to be extremely challenging. Only a few achievements in the field of (electro)chemistry have been reported in the literature [1-4]. The most recent development is an electrochemical version of the metal assisted chemical etching method used to produce high aspect ratio nanostructures: a noble metal electrode is put in contact with a Si sample in a HF solution and polarized against a counter electrode; in the contacted areas the metal plays the role of etching tool by oxidizing/dissolving Si atoms [2,3]. The major problem encountered with this configuration lies in the intimate Si/metal contact, which hinders electrolyte supply over macroscopic distances. Hence, etching is very slow, starting from the edge of the metal tool and progressing laterally. An efficient pattern transfer has been recently demonstrated in the case of porous Si etching with a gold coated stamp, the porous Si network allowing the electrolyte to reach the Si/Au interface [4]. In this work, we present a new strategy to achieve pattern transfer into Si by a single step electrochemical (EC) contact etching with large dimension metal tools, as schemed in Figure 1a. Figure 1. a) Scheme of the electrochemical contact etching process; b, c) optical and SEM images of a n-type (100) Si surface after imprinting a pattern of inverted pyramids with d) a nanoporous Au electrode. The problematic diffusion of the electrolyte is solved by using for the first time nanoporous metal electrodes, which give access for the electrolyte to the whole Si/metal interface. Thus, etching is achieved with a priori no restriction on the dimensions of the treated surfaces. Our first results demonstrate the transfer of a well-defined array of square inverted pyramids over a treated area of approximately 1 mm 2 (Figure 1b and 1c) in a single step and without any prior lithography or masking process of the substrate. The etched pyramids are not aligned with the [001] and [010] directions of the (100) oriented sample (21° off) which clearly indicate that the pattern transfer is independent of the crystallographic orientation. This is a proof of concept for EC contact etching with nanoporous metal imprints, with a high potential for Si surface texturization (e.g. solar cells) [5].

Topics
  • porous
  • impedance spectroscopy
  • microstructure
  • surface
  • scanning electron microscopy
  • gold
  • Silicon
  • lithography
  • aligned
  • dissolving
  • dry etching