Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

König, Christina

  • Google
  • 2
  • 5
  • 0

Technical University of Denmark

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023The effect of cyclic heat treatment on microstructure evolution during Plasma Arc Additive Manufacturing employing an SEM in-situ heating studycitations
  • 2023Probing the Effects of Cyclic Heating in Metal Additive Manufacturing by means of a Quasi in situ EBSD Studycitations

Places of action

Chart of shared publication
Jinschek, Joerg R.
2 / 16 shared
Mayr, Peter
1 / 120 shared
Bastos Da Silva Fanta, Alice
2 / 23 shared
Kabliman, Evgeniya
1 / 4 shared
Mishra, Dhirendra
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Jinschek, Joerg R.
  • Mayr, Peter
  • Bastos Da Silva Fanta, Alice
  • Kabliman, Evgeniya
  • Mishra, Dhirendra
OrganizationsLocationPeople

document

Probing the Effects of Cyclic Heating in Metal Additive Manufacturing by means of a Quasi in situ EBSD Study

  • Jinschek, Joerg R.
  • Bastos Da Silva Fanta, Alice
  • König, Christina
Abstract

Plasma Arc Additive Manufacturing (PLAAM) exhibits high heating and cooling rates during the AM process, resulting in material phenomena such as anisotropy and the formation of metastable phases, which significantly influence the final product's properties. A critical aspect of AM is the layer wise construction of components, wherein each new layer experiences additional heat input that potentially affects microstructural evolution. <br/><br/>This study focuses on developing a heating setup for a scanning electron microscope (SEM) capable of accurately reproducing the high heating and cooling rates observed during AM on bulk like samples measuring 100x100x20µm. The devised heating setup relies on a micro electro mechanical systems (MEMS) chip, off ering precise control over heating and cooling rates, thus closely emulating the conditions experienced in the AM process. To validate the efficacy of the heating setup, COMSOL temperature simulations are employed to ensure accurate thermal control.<br/><br/>The effects of cyclic heating on the microstructure are investigated through electron backscatter diffraction (EBSD) analysis performed after each heating step. This quasi in situ EBSD study enables the characterization of phasetransformations, texture alterat ions, and grain growth, thereby providing valuable insights into the material behavior under AM like heating conditions. This research contributes to the advancement of knowledge and optimization of AM processes, ultimately facilitating the production of high quality components with customized microstructures and improved performance.

Topics
  • impedance spectroscopy
  • grain
  • scanning electron microscopy
  • simulation
  • texture
  • electron backscatter diffraction
  • additive manufacturing
  • grain growth
  • metastable phase