People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bastos Da Silva Fanta, Alice
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (23/23 displayed)
- 2023Thermal stability of hierarchical microstructural features in additively manufactured stainless steelcitations
- 2023Study in Phase-Transformation Temperature in Nitinol by In Situ TEM Heating
- 2023The effect of cyclic heat treatment on microstructure evolution during Plasma Arc Additive Manufacturing employing an SEM in-situ heating study
- 2023Probing the Effects of Cyclic Heating in Metal Additive Manufacturing by means of a Quasi in situ EBSD Study
- 2023Study of Phase-transformation Behavior in Additive Manufacturing of Nitinol Shape Memory Alloys by In Situ TEM Heating
- 2022Probing the role of grain boundaries in single Cu nanoparticle oxidation by in situ plasmonic scatteringcitations
- 2022Probing the role of grain boundaries in single Cu nanoparticle oxidation by in situ plasmonic scatteringcitations
- 2022Probing the role of grain boundaries in single Cu nanoparticle oxidation by in situ plasmonic scatteringcitations
- 2022High resolution crystal orientation mapping of ultrathin films in SEM and TEMcitations
- 2021Recent developments for the characterization of crystals and defects at the nanoscale using on-axis TKD in SEM
- 2021Challenges and perspectives of Transmission Kikuchi Diffraction for nanocrystalline materials characterization
- 2020Aminopropylsilatrane Linkers for Easy and Fast Fabrication of High-Quality 10 nm Thick Gold Films on SiO2 Substratescitations
- 2020Aminopropylsilatrane Linkers for Easy and Fast Fabrication of High-Quality 10 nm Thick Gold Films on SiO 2 Substratescitations
- 2019Metal-polymer hybrid nanomaterials for plasmonic ultrafast hydrogen detectioncitations
- 2018Optimal microstructural design for high thermal stability of pure FCC metals based on studying effect of twin boundaries character and network of grain boundariescitations
- 2017Influence of Ti and Cr Adhesion Layers on Ultrathin Au Filmscitations
- 2017Iron Oxide Films Prepared by Rapid Thermal Processing for Solar Energy Conversioncitations
- 2017Time-of-Flight Three Dimensional Neutron Diffraction in Transmission Mode for Mapping Crystal Grain Structurescitations
- 2017Time-of-Flight Three Dimensional Neutron Diffraction in Transmission Mode for Mapping Crystal Grain Structurescitations
- 2013Partial transformation of austenite in Al-Mn-Si TRIP steel upon tensile straining: an in situ EBSD studycitations
- 20093-D Analysis of Graphite Nodules in Ductile Cast Iron Using FIB-SEM
- 2008Three-dimensional EBSD study on the relationship between triple junctions and columnar grains in electrodeposited Co-Ni filmscitations
- 2007Orientation microscopy on nanostructured electrodeposited NiCo-Films
Places of action
Organizations | Location | People |
---|
document
Probing the Effects of Cyclic Heating in Metal Additive Manufacturing by means of a Quasi in situ EBSD Study
Abstract
Plasma Arc Additive Manufacturing (PLAAM) exhibits high heating and cooling rates during the AM process, resulting in material phenomena such as anisotropy and the formation of metastable phases, which significantly influence the final product's properties. A critical aspect of AM is the layer wise construction of components, wherein each new layer experiences additional heat input that potentially affects microstructural evolution. <br/><br/>This study focuses on developing a heating setup for a scanning electron microscope (SEM) capable of accurately reproducing the high heating and cooling rates observed during AM on bulk like samples measuring 100x100x20µm. The devised heating setup relies on a micro electro mechanical systems (MEMS) chip, off ering precise control over heating and cooling rates, thus closely emulating the conditions experienced in the AM process. To validate the efficacy of the heating setup, COMSOL temperature simulations are employed to ensure accurate thermal control.<br/><br/>The effects of cyclic heating on the microstructure are investigated through electron backscatter diffraction (EBSD) analysis performed after each heating step. This quasi in situ EBSD study enables the characterization of phasetransformations, texture alterat ions, and grain growth, thereby providing valuable insights into the material behavior under AM like heating conditions. This research contributes to the advancement of knowledge and optimization of AM processes, ultimately facilitating the production of high quality components with customized microstructures and improved performance.