People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Deleruyelle, Damien
Institut National des Sciences Appliquées de Lyon
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (26/26 displayed)
- 2024Development of ferroelectric and antiferroelectric H1-xZrxO2-based capacitors for non-volatile memories and power supply applications
- 2024Serendipity in materials science: how a simple doping leads to novel and outstanding properties in simple dielectric HfO2 !
- 2024Stabilization of low dimensional ferroelectric HfZrO2 film
- 2023How ALD deposition analysis can help PVD deposition process!
- 2023How ALD deposition analysis can help PVD deposition process!
- 2023Engineering the nano and micro structures of sputtered HfZrO2 thin films
- 2023Engineering the nano and micro structures of sputtered HfZrO2 thin films
- 2023Interplay between Strain and Defects at the Interfaces of Ultra‐Thin Hf 0.5 Zr 0.5 O 2 ‐Based Ferroelectric Capacitorscitations
- 2023Interplay between Strain and Defects at the Interfaces of Ultra‐Thin Hf 0.5 Zr 0.5 O 2 ‐Based Ferroelectric Capacitorscitations
- 2023Interface engineering between HfZrO2 thin films and electrodes for enhanced ferroelectricity
- 2023Interface engineering between HfZrO2 thin films and electrodes for enhanced ferroelectricity
- 2022Fabrication process for sub-8 nm HfZrO2-based ferroelectric tunnel junctions with enhanced properties
- 2022Ferroelectricity Improvement in Ultra-Thin Hf0.5Zr0.5O2 Capacitors by the Insertion of a Ti Interfacial Layercitations
- 2022Ferroelectricity Improvement in Ultra-Thin Hf0.5Zr0.5O2 Capacitors by the Insertion of a Ti Interfacial Layercitations
- 2022A multiscale study of the structure, chemistry and ferroelectric properties of epitaxial sol-gel PbZr0.2Ti0.8O3 films for nanomechanical switching
- 2022A multiscale study of the structure, chemistry and ferroelectric properties of epitaxial sol-gel PbZr0.2Ti0.8O3 films for nanomechanical switching
- 2022How to play on the fabrication process of HfZrO2 ferroelectric thin film to enhance its physical properties
- 2021Electrical Characterisation of HfZrO2 Ferroelectric Tunnel Junctions for Neuromorphic Application
- 2021Bottom electrodes impact on Hf0.5Zr0.5O2 ferroelectric tunnel junctions
- 2021Bottom electrodes impact on Hf0.5Zr0.5O2 ferroelectric tunnel junctions
- 2021Effect of bottom electrodes on HZO thin film properties
- 2021Impact of a dielectric layer at TiN/HfZrO2 interface for ferroelectric tunnel junctions applications
- 2021Impact of a dielectric layer at TiN/HfZrO2 interface for ferroelectric tunnel junctions applications
- 2021Role of ultra-thin Ti and Al interfacial layers in HfZrO2 ferroelectric tunnel junctions
- 2021Role of ultra-thin Ti and Al interfacial layers in HfZrO2 ferroelectric tunnel junctions
- 2014Photo-Cross-Linked Diblock Copolymer Micelles: Quantitative Study of Photochemical Efficiency, Micelles Morphologies and their Thermal Behaviorcitations
Places of action
Organizations | Location | People |
---|
document
How ALD deposition analysis can help PVD deposition process!
Abstract
HfO2 is known to exist in three different crystal phases at normal pressure:monoclinic phase at 300K, a tetragonal phase above 2050K, and finally a cubic phase above 2803K. The stable region of the tetragonal phase extends to lower temperatures in nanoscale crystallites due to the surface energy effect. As a consequence, the crystallization in thin films tends to proceed by nucleation in a tetragonal phase and a martensitic transformation to the monoclinic phase during crystal growth. This phase transformation involves volume expansion and shearing of the unit cell. The admixture of sufficient SiO2 (between 5 and 10 mol.%) has been found to stabilize the tetragonal phase in HfO2 but in 2011, it was also reportedthe presence of ferroelectric and antiferroelectric crystalline phases in SiO2-doped HfO2 thin films grown by atomic layer deposition [1]. Based on X-ray diffraction measurements, it was argued that the ferroelectric phase is orthorhombic with a Pca21 space group. The occurrence of ferroelectricity in Si:HfO2 is remarkable as it represents one of very few metal oxides which are thermodynamically stable on silicon, leading to enable a number of device concepts relying on silicon/ferroelectric heterostructures. Various applications have been suggested for fluorite-structure ferroelectrics due to their advantages over the conventional perovskite-structure ferroelectrics [2]. We focus on (Hf,Zr)O2 (HZO) thin films deposition for the capacitor of Ferroelectric Random Access Memories (FRAM) in the 1Transitor-1Capacitor (1T-1C) model. (Hf,Zr)O2 thin films are studied to either fully understand the stabilization of the ferroelectric phase (f-phase) by atomic layer deposition and RF magnetron sputtering or to fit with industrial requirements [3].References: [1] T.S. Bockle et al., Appl. Phys. Lett. 99, 102903 (2011). [2] M.H. Park, et al., MRS Commun. 1 (2018). [3] J. Bouaziz et al., ACS Applied Electronic Materials 1 (9), 1740 (2019).