People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Wejrzanowski, Tomasz
Warsaw University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (27/27 displayed)
- 2023Recycling electronic scrap to make molten carbonate fuel cell cathodescitations
- 2022Effect of annealing on the mechanical and corrosion properties of 316L stainless steel manufactured by laser powder bed fusioncitations
- 2021Design of SiC-Doped Piezoresistive Pressure Sensor for High-Temperature Applicationscitations
- 2021Supporting ionic conductivity of Li2CO3/K2CO3 molten carbonate electrolyte by using yttria stabilized zirconia matrixcitations
- 2021Elastic dipole tensors and relaxation volumes of point defects in concentrated random magnetic Fe-Cr alloyscitations
- 2020Metallic foam supported electrodes for molten carbonate fuel cellscitations
- 2020Metallic foam supported electrodes for molten carbonate fuel cellscitations
- 2018Multi-modal porous microstructure for high temperature fuel cell applicationcitations
- 2018Investigation of the relationship between morphology and permeability for open-cell foams using virtual materials testingcitations
- 2018Dual ionic conductive membrane for molten carbonate fuel cellcitations
- 2018Temperature influence on six layers samaria doped ceria matrix impregnated by lithium/potassium electrolyte for Molten Carbonate Fuel Cellscitations
- 2018Microstructure design of electrodes for high temperature fuel cell applications
- 2018Improving a Molten Carbonate Fuel Cell Matrix Strength By Fiber Reinforcing
- 2017Copper-Carbon Nanoforms Composites – Processing, Microstructure and Thermal Propertiescitations
- 2017Development of Molten Carbonate Fuel Cells at Warsaw University of Technologycitations
- 2017Status report on high temperature fuel cells in Poland – Recent advances and achievementscitations
- 2017Modeling of Size Effects in Diffusion Driven Processes at Nanoscale - Large Atomic and Mesoscale Methodscitations
- 2017Design of Reservoir Recognition Technique Component - Open Porosity in Non-Polarizing Electrodes
- 2017Optimization of the Microstructure of Molten Carbonate Fuel Cell Anodecitations
- 2017Incorporation of the Pore Size Variation to Modeling of the Elastic Behavior of Metallic Open-Cell Foamscitations
- 2016Numerical simulations of epitaxial growth in MOVPE reactor as a tool for aluminum nitride growth optimization
- 2016Design of open-porous materials for high-temperature fuel cells
- 2016Structural and mechanical aspects of multilayer graphene addition in alumina matrix composites–validation of computer simulation model
- 2014Effect of grain size on the melting point of confined thin aluminum filmscitations
- 2010Atomic ordering in nano-layered FePt: Multiscale Monte Carlo simulationcitations
- 2009Description of the homogeneity of material microstructures: using computer-aided analysiscitations
- 2008Atomic ordering in nano-layered L1<inf>0</inf> Ab binaries: Multiscale Monte-Carlo simulations
Places of action
Organizations | Location | People |
---|
document
Microstructure design of electrodes for high temperature fuel cell applications
Abstract
High temperature fuel cells, including molten carbonate fuel cell (MCFC) and solid oxide fuel cell (SOFC), are electrochemical devices used for highly efficient conversion of gaseous fuels into electricity. The fuel cell operation efficiency and lifetime are limited by several factors, mainly related to chemical composition and microstructure of electrode materials.The comprehensive design of high temperature fuel cell (HTFC) materials requires the optimization of both: chemical composition and microstructure. The chemical composition greatly determines corrosion resistance and catalytic activity of the electrode surface, while the microstructure provides pathways for sufficient mass-transport of gaseous reactants, interaction/exchange of gas molecules, as well as transport of electrons and ions. Many studies have been devoted to proposing various material solutions for HTFC incorporating complex chemical compositions, while little is known about the microstructural effects on the fuel cell performance. A better understanding of these phenomena by the application of modern methods involving fabrication, characterization and numerical modeling of materials leads to the improvement of fuel cell performance and durability.Within these studies, a deeper insight into the understanding of the influence of porosity, pore size distribution, specific surface area, and other microstructure parameters on the performance of molten carbonate fuel cell is presented by the complementary application of fabrication, characterization and modeling techniques. The results of these investigations into MCFC show that the appropriate design of the microstructural features of the cathode might even double the power density of the cell. Therefore, open-porous microstructure of MCFC cathode with multi modal pore size distribution is beneficial. It strongly determines the total length of the triple phase boundary (TPB) within a material which is an important factor to be optimized for increasing the efficiency of the complex electrode reactions.To differentiate the porosity and the pore size distribution, several nickel-based electrodes were manufactured by tape casting technique with various porogen contents