Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Brøgger, Anna Line

  • Google
  • 1
  • 8
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2013DNA hybridization sensing for cytogenetic analysiscitations

Places of action

Chart of shared publication
Bosco, Filippo
1 / 2 shared
Boisen, Anja
1 / 62 shared
Dimaki, Maria
1 / 11 shared
Svendsen, Winnie Edith
1 / 14 shared
Dapra, Johannes
1 / 1 shared
Kwasny, Dorota
1 / 3 shared
Rozlosnik, Noemi
1 / 6 shared
Tumer, Zeynep
1 / 1 shared
Chart of publication period
2013

Co-Authors (by relevance)

  • Bosco, Filippo
  • Boisen, Anja
  • Dimaki, Maria
  • Svendsen, Winnie Edith
  • Dapra, Johannes
  • Kwasny, Dorota
  • Rozlosnik, Noemi
  • Tumer, Zeynep
OrganizationsLocationPeople

document

DNA hybridization sensing for cytogenetic analysis

  • Bosco, Filippo
  • Boisen, Anja
  • Dimaki, Maria
  • Svendsen, Winnie Edith
  • Brøgger, Anna Line
  • Dapra, Johannes
  • Kwasny, Dorota
  • Rozlosnik, Noemi
  • Tumer, Zeynep
Abstract

Cytogenetic analysis focuses on studying the cell structure, mainly in respect to chromosome content and their structure. Chromosome abnormalities, such as translocations may cause various genetic disorders, but are also associated with heametological malignancies. Chromosome translocations are rearrangements between two chromosome arms that results in two derivative chromosomes having a mixed DNA sequence. The current detection method is a Fluorescent In situ Hybridization, which requires a use of expensive, fluorescently labeled probes that target the DNA sequences of two chromosomes involved in the translocation (Kwasny et al., 2012).<br/>We have developed a new double hybridization assay that allows for sorting of the DNA chromosomal fragments into separate compartment, moreover allowing for detection of the translocation. To detect the translocation it is necessary to determine that the two DNA sequences forming a derivative chromosome are connected, which is achieved by two subsequent hybridization steps. The first example of the translocation detection was presented on lab-on-a-disc using fluorescently labeled DNA fragments, representing the derivative chromosome (Brøgger et al., 2012). To allow for cheaper detection a label-free approach has been investigated using electrochemical impedance spectroscopy as a sensing method. We present here our recent results in regards to DNA sensing on metallic and conductive polymer electrodes for translocation detection. Our sensors are inexpensive and can be successfully applied in cytogenetic analysis as a replacement of standard techniques.<br/>

Topics
  • impedance spectroscopy
  • polymer
  • forming