Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Smola, B.

  • Google
  • 10
  • 37
  • 79

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (10/10 displayed)

  • 2017Hydrogen absorption in Mg-Gd alloy28citations
  • 2017Microhardness and In Vitro Corrosion of Heat-Treated Mg–Y–Ag Biodegradable Alloy24citations
  • 2016As solidified Microstructure nvestigation of Mg15Y and MgxYyGd (x+y=15 wt.%) Ternary Alloyscitations
  • 2016As solidified microstructure investigation of Mg15Y and MgxYyGd (x+y=15 wt.%) ternary alloys2citations
  • 2016Effects in Mg-Zn-based alloys strengthened by quasicrystalline phase1citations
  • 2015The effect of heat treatment on morphology and phase composition of grain boundary phases in Mg-Zn-Y-Nd-Zrcitations
  • 2014Magnesium alloy containing silver for degradable biomedical implantscitations
  • 2014Precipitation processes in Mg-Y-Nd-Ag alloys suitable for biodegradable implantscitations
  • 2008Creep behaviour of the creep resistant MgY3Nd2Zn1Mn1 alloy24citations
  • 2007Creepové Porušování Slitiny MgY3Nd2Zn1Mn1 Lité Metodou Squeeze Castingcitations

Places of action

Chart of shared publication
Kmjec, T.
1 / 3 shared
Minárik, P.
1 / 16 shared
Kudrnová, H.
4 / 4 shared
Čízek, J.
2 / 5 shared
Stulíková, I.
9 / 10 shared
Lukáč, F.
5 / 27 shared
Vlček, M.
5 / 30 shared
Hruška, P.
2 / 5 shared
Vlasák, T.
1 / 4 shared
Stulikova, I.
1 / 1 shared
Kudrnova, H.
1 / 1 shared
Willumeit-Roemer, R.
1 / 20 shared
Hort, N.
5 / 266 shared
Szakacs, G.
1 / 9 shared
Luczak, M.
1 / 3 shared
Lukac, F.
1 / 4 shared
Vlcek, M.
3 / 6 shared
Szakács, G.
4 / 8 shared
Wolff, M.
2 / 32 shared
Schmid-Fetzer, R.
2 / 18 shared
Schell, N.
2 / 220 shared
Kainer, K. U.
1 / 95 shared
Mendis, C. L.
2 / 40 shared
Tolnai, D.
2 / 49 shared
Lukác, F.
2 / 2 shared
Kainer, Ku
3 / 341 shared
Melikhova, O.
2 / 2 shared
Jäger, A.
2 / 48 shared
Procházka, I.
2 / 8 shared
Vlach, M.
4 / 5 shared
Kužel, R.
1 / 18 shared
Čížek, J.
1 / 20 shared
Kekule, T.
1 / 1 shared
Kodetová, V.
1 / 1 shared
Očenášek, V.
2 / 3 shared
Hnilica, F.
2 / 3 shared
Janik, Vit
2 / 31 shared
Chart of publication period
2017
2016
2015
2014
2008
2007

Co-Authors (by relevance)

  • Kmjec, T.
  • Minárik, P.
  • Kudrnová, H.
  • Čízek, J.
  • Stulíková, I.
  • Lukáč, F.
  • Vlček, M.
  • Hruška, P.
  • Vlasák, T.
  • Stulikova, I.
  • Kudrnova, H.
  • Willumeit-Roemer, R.
  • Hort, N.
  • Szakacs, G.
  • Luczak, M.
  • Lukac, F.
  • Vlcek, M.
  • Szakács, G.
  • Wolff, M.
  • Schmid-Fetzer, R.
  • Schell, N.
  • Kainer, K. U.
  • Mendis, C. L.
  • Tolnai, D.
  • Lukác, F.
  • Kainer, Ku
  • Melikhova, O.
  • Jäger, A.
  • Procházka, I.
  • Vlach, M.
  • Kužel, R.
  • Čížek, J.
  • Kekule, T.
  • Kodetová, V.
  • Očenášek, V.
  • Hnilica, F.
  • Janik, Vit
OrganizationsLocationPeople

document

Creepové Porušování Slitiny MgY3Nd2Zn1Mn1 Lité Metodou Squeeze Casting

  • Smola, B.
  • Očenášek, V.
  • Stulíková, I.
  • Hnilica, F.
  • Janik, Vit
Abstract

<p>The paper deals with the creep damage of the alloy MgY3Nd2Zn1Mn1 prepared by squeeze casting. The tensile creep tests were performed at constant load in the stress range 30 to 80 MPa and at 300<sup>o</sup>C. In the stress range 30 to 70 MPa, the minimum creep rate (ε/t)<sub>min</sub> is a function of the stress which follows a power law with an exponent n = 5.89. The time to fracture t<sub>f</sub> is also a power function of the stress with an exponent m = - 4.39. The modified Monkman-Grant relation can be expressed by the equation t<sub>f</sub>/(ε<sub>f</sub> − ε<sub>p</sub>).(ε/t)<sub>min</sub><sup>1.0001</sup> = 0.57, where ε<sub>f</sub> is the strain at fracture and ε<sub>p</sub> is the strain of primary creep. Both the mean value of the modified Monkman-Grant and its scatter (determined for the particular stress values in the Monkman-Grant relation at unity value of the exponent) correspond to the model of constrained growth of cavities along dendrite boundaries. The creep damage consisting in initiation, growth and coalescence of cavities at dendrite boundaries was monitored by light microscopy observation of the surface of creep test pieces and metallographic samples prepared in planes parallel with test pieces axis, and by fractographic studies of fracture surfaces of broken creep specimens using scanning electron microscopy. In addition, our results proved the validity of the relation between the time to fracture t<sub>f</sub> and the time necessary to achieve the Monkman-Grant elongation t<sub>MGD</sub>= t<sub>f</sub>.(ε/t)<sub>min</sub> consistent with the model of continuous creep damage.</p>

Topics
  • impedance spectroscopy
  • surface
  • scanning electron microscopy
  • casting
  • creep
  • creep test