Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Cherian Lukose, Cecil

  • Google
  • 9
  • 21
  • 64

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (9/9 displayed)

  • 2024Innovative Tin and hard carbon architecture for enhanced stability in lithium-ion battery anodes3citations
  • 2023Biocompatible Ti3Au–Ag/Cu thin film coatings with enhanced mechanical and antimicrobial functionality4citations
  • 2022Enhanced mechanical and biocompatibility performance of Ti(1- x )Ag(x) coatings through intermetallic phase modification5citations
  • 2022Thermal activation of Ti(1-x)Au(x) thin films with enhanced hardness and biocompatibility  16citations
  • 2022Mn3Ag(1-x)Cu(x)N antiperovskite thin films with ultra-low temperature coefficient of resistance11citations
  • 2022Thermal activation of Ti(1-x)Au(x) thin films with enhanced hardness and biocompatibility16citations
  • 2021Mechanical performance of biocompatible Ti-Au thin films grown on glass and Ti6Al4V substratescitations
  • 2021Effect of noble metal (M=Ag, Au) doping concentration on mechanical and biomedical properties of Ti-M matrix thin films co-deposited by magnetron sputteringcitations
  • 2018Tuning the antimicrobial behaviour of Cu85Zr15 thin films in “wet” and “dry” conditions through structural modifications9citations

Places of action

Chart of shared publication
Mamlouk, Mohamed
1 / 5 shared
Rasul, Shahid
1 / 18 shared
Zia, Abdul Wasy
1 / 19 shared
Shakoor, Rana Abdul
1 / 7 shared
Shahzad, Rana Faisal
1 / 7 shared
Zoppi, Guillaume
2 / 36 shared
Birkett, Martin
8 / 23 shared
Anestopoulos, Ioannis
4 / 7 shared
Bowen, Leon
3 / 8 shared
Morrone, Davide
1 / 4 shared
Panayiotidis, Mihalis I.
5 / 8 shared
Liu, Terence
1 / 5 shared
Panagiotidis, Iraklis-Stavros
1 / 1 shared
Serranoaroca, Ángel
1 / 1 shared
Black, Anna
1 / 1 shared
Mendola, Lorenzo
1 / 2 shared
Dover, Lynn G.
2 / 3 shared
Chavignon, Corentin
1 / 1 shared
Mantso, Theodora
3 / 3 shared
Sanchez, Sergio Gonzalez
1 / 9 shared
Puzas, Victor Villapun
1 / 1 shared
Chart of publication period
2024
2023
2022
2021
2018

Co-Authors (by relevance)

  • Mamlouk, Mohamed
  • Rasul, Shahid
  • Zia, Abdul Wasy
  • Shakoor, Rana Abdul
  • Shahzad, Rana Faisal
  • Zoppi, Guillaume
  • Birkett, Martin
  • Anestopoulos, Ioannis
  • Bowen, Leon
  • Morrone, Davide
  • Panayiotidis, Mihalis I.
  • Liu, Terence
  • Panagiotidis, Iraklis-Stavros
  • Serranoaroca, Ángel
  • Black, Anna
  • Mendola, Lorenzo
  • Dover, Lynn G.
  • Chavignon, Corentin
  • Mantso, Theodora
  • Sanchez, Sergio Gonzalez
  • Puzas, Victor Villapun
OrganizationsLocationPeople

conferencepaper

Mechanical performance of biocompatible Ti-Au thin films grown on glass and Ti6Al4V substrates

  • Birkett, Martin
  • Anestopoulos, Ioannis
  • Cherian Lukose, Cecil
  • Panayiotidis, Mihalis I.
Abstract

Ti-Au intermetallic based material systems are being extensively studied to develop hard and wear resistant biocompatible thin film coatings over implant devices to extend their lifetime [1, 2]. However, the measurement of these mechanical characteristics depends upon factors such as surface properties of the substrates and their temperature during thin film deposition. In this work, Ti-Au thin films were deposited by magnetron sputtering on both glass and Ti6Al4V substrates at two different temperatures. These films were studied for their mechanical properties by the nanoindentation technique in both load control and displacement control modes using a Berkovich tip. XRD patterns and cross section SEM images detail the microstructure while AFM images present the surface morphology of these Ti-Au thin films. Biocompatibility of the films is verified by cytotoxicity tests on L929 mouse fibroblast cells using Alamar blue reagent and the ions leaching in the film extracts is measured using the ICPOEMS technique. Standard deviation for hardness of films on glass substrates is ~4 times lower than that on Ti6Al4V substrates and is corelated to a corresponding increase in surface roughness from 2nm for glass to 40nm for Ti6Al4V substrates [3]. Increasing substrate temperature leads to an increase in film hardness from 5.1 to 8.9GPa and is related to the development of a super hard β phase of the Ti3Au intermetallic. The standard deviation of this peak mechanical hardness value of 8.9GPa is reduced by 3 times when measured in displacement control mode compared to the value measured in load control mode due of the effect of nanoindentation tip penetration depth. All the Ti-Au thin films exhibit excellent cytotoxicity values above 95% and ion leaching below 100ppb. This work presents a comparative study to optimize hardness measurement of Ti-Au thin films, critical for a better understanding of these super hard biocompatible coatings.

Topics
  • Deposition
  • impedance spectroscopy
  • microstructure
  • surface
  • phase
  • scanning electron microscopy
  • x-ray diffraction
  • thin film
  • atomic force microscopy
  • glass
  • glass
  • hardness
  • nanoindentation
  • leaching
  • intermetallic
  • biocompatibility