People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Esderts, Alfons
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2022On scaled normal stresses in multiaxial fatigue and their exemplary application to ductile cast ironcitations
- 2022On Scaled Normal Stresses in Multiaxial Fatigue and Their Exemplary Application to Ductile Cast Iron ...
- 2021Mehrachsige Schwingfestigkeitskennwerte für Gusseisen mit Kugelgraphit
- 2019Bestimmung zyklischer Werkstoffkennwerte für Schweißnähte basierend auf der Härte
- 2019Eigenspannungen und Gefügemorphologie additiv gefertigter Bauteile unter Einfluss unterschiedlicher Zwischenlagentemperaturen
- 2018Rechnerischer Festigkeitsnachweis von ADI-Gussbauteilen
- 2018Betriebsfestigkeitsnachweis von ADI-Gussbauteilen. Untersuchung von ADI-Gussbauteilen auf ihre zyklische Festigkeit bei unterschiedlichen Mittelspannungen.
- 2018Residual strength prediction for multi-directional composites subjected to arbitrary fatigue loads
- 2017Slope estimation of the S-N curve in the log-life fatigue region
- 2011Fatigue crack growth in railway axles: Assessment concept and validation testscitations
- 2010Fracture mechanics assessment of railway axles: Experimental characterization and computationcitations
- 2008Scattering of cyclic material parameters of different lots of sheet metal TRIP 700
- 2008Formed Thin Sheet Structures-Concepts for Fatigue Life Calculation
- 2008Fracture mechanics assessment of railway axles based on experimental and computational investigations
- 2007Structural Durability of MRI 153M Die-Cast Components
- 2006Schwingfestigkeitsverhalten von hochfrequenzgeschweißten Aluminiumknetlegierungen
- 2005Verhalten umgeformter und gefügter Feinbleche unter zyklischer Belastung
Places of action
Organizations | Location | People |
---|
document
Formed Thin Sheet Structures-Concepts for Fatigue Life Calculation
Abstract
A fatigue life calculation of formed thin sheet metal structures is best undertaken using local concepts, as principle stresses can often not be defined. Currently linear finite element calculations are the most common method used to determine local loads. Only materials' Young's Modulus is required for the calculation. The calculated stresses are translated into fatigue life estimations using various methods. Non-linear finite element calculations are better suited to describing the local stress-strain states under alternating loads. Knowledge of the cyclic stress-strain curve of the utilised material is required for this procedure. Subsequently the local strain is assessed using the strain-life curve. Forming can have a substantial influence on the cyclic stress-strain curve and the strain-life curve. By running a preliminiary forming simulation, the local material thickness and the local state of forming can be estimated, without having to manufacture a prototype part. A comparison of linear and non-linear calculation concepts for a stiffening sheet for a MacPherson strut unit with experimental results shows that a linear calculation cannot describe the exact location of the highest loads if a constant material thickness and cyclic material data for the base matreial are used for the calculation basis. A non-linear finite element analysis with a preliminary forming simulation including the changes of local sheet thickness as well as the changes of the cyclic material data on the other hand predicts the location of crack initiation accurately. The comparison of the strain-life curves from experiments with those derived from linear and non-linear finite element calculations shows that the prediction accuracy of a fatigue life calculation can be substantially increased for formed sheet metal parts if the local changes of material thickness and cyclic material data due to the manufacturing process are taken into account.