Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Esderts, Alfons

  • Google
  • 17
  • 38
  • 140

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (17/17 displayed)

  • 2022On scaled normal stresses in multiaxial fatigue and their exemplary application to ductile cast iron12citations
  • 2022On Scaled Normal Stresses in Multiaxial Fatigue and Their Exemplary Application to Ductile Cast Iron ...citations
  • 2021Mehrachsige Schwingfestigkeitskennwerte für Gusseisen mit Kugelgraphitcitations
  • 2019Bestimmung zyklischer Werkstoffkennwerte für Schweißnähte basierend auf der Härtecitations
  • 2019Eigenspannungen und Gefügemorphologie additiv gefertigter Bauteile unter Einfluss unterschiedlicher Zwischenlagentemperaturencitations
  • 2018Rechnerischer Festigkeitsnachweis von ADI-Gussbauteilencitations
  • 2018Betriebsfestigkeitsnachweis von ADI-Gussbauteilen. Untersuchung von ADI-Gussbauteilen auf ihre zyklische Festigkeit bei unterschiedlichen Mittelspannungen.citations
  • 2018Residual strength prediction for multi-directional composites subjected to arbitrary fatigue loadscitations
  • 2017Slope estimation of the S-N curve in the log-life fatigue regioncitations
  • 2011Fatigue crack growth in railway axles: Assessment concept and validation tests86citations
  • 2010Fracture mechanics assessment of railway axles: Experimental characterization and computation42citations
  • 2008Scattering of cyclic material parameters of different lots of sheet metal TRIP 700citations
  • 2008Formed Thin Sheet Structures-Concepts for Fatigue Life Calculationcitations
  • 2008Fracture mechanics assessment of railway axles based on experimental and computational investigationscitations
  • 2007Structural Durability of MRI 153M Die-Cast Componentscitations
  • 2006Schwingfestigkeitsverhalten von hochfrequenzgeschweißten Aluminiumknetlegierungencitations
  • 2005Verhalten umgeformter und gefügter Feinbleche unter zyklischer Belastungcitations

Places of action

Chart of shared publication
Wächter, Michael
5 / 5 shared
Gaier, Christian
2 / 3 shared
Linn, Alexander
3 / 4 shared
Wuthenow, Ralf
2 / 2 shared
Fällgren, Carl
2 / 3 shared
Kraft, Jan
2 / 2 shared
Vormwald, Michael
2 / 2 shared
Varfolomeev, Igor
1 / 7 shared
Moroz, Sergii
1 / 1 shared
Rudorffer, Winniefred
1 / 1 shared
Dittmann, Florian
1 / 1 shared
Leicher, Marcel
1 / 2 shared
Wesling, Volker
3 / 41 shared
Treutler, Kai
1 / 31 shared
Engelke, Torben
3 / 3 shared
Möller, Marc
1 / 1 shared
Ziegmann, Gerhard
1 / 12 shared
Blaurock, J.
1 / 1 shared
Luke, M.
3 / 13 shared
Varfolomeev, I.
2 / 14 shared
Lutkepohl, K.
1 / 1 shared
Lütkepohl, K.
2 / 2 shared
Masendorf, Rainer
3 / 3 shared
Medhurst, Tim
2 / 2 shared
Hinkelmann, Karsten
1 / 1 shared
Nikkel, Karsten
1 / 1 shared
Varfolomeyev, I.
1 / 3 shared
Grimm, J.
1 / 3 shared
Gugau, M.
1 / 1 shared
Berger, Christina
1 / 1 shared
Troßmann, Torsten
1 / 3 shared
David, Patrick
1 / 2 shared
Wagener, Rainer
1 / 13 shared
Schram, Antonia
1 / 3 shared
Rekersdrees, Tim
1 / 1 shared
Palkowski, Heinz
1 / 31 shared
Anke, Th
1 / 1 shared
Schramm, Antonia
1 / 1 shared
Chart of publication period
2022
2021
2019
2018
2017
2011
2010
2008
2007
2006
2005

Co-Authors (by relevance)

  • Wächter, Michael
  • Gaier, Christian
  • Linn, Alexander
  • Wuthenow, Ralf
  • Fällgren, Carl
  • Kraft, Jan
  • Vormwald, Michael
  • Varfolomeev, Igor
  • Moroz, Sergii
  • Rudorffer, Winniefred
  • Dittmann, Florian
  • Leicher, Marcel
  • Wesling, Volker
  • Treutler, Kai
  • Engelke, Torben
  • Möller, Marc
  • Ziegmann, Gerhard
  • Blaurock, J.
  • Luke, M.
  • Varfolomeev, I.
  • Lutkepohl, K.
  • Lütkepohl, K.
  • Masendorf, Rainer
  • Medhurst, Tim
  • Hinkelmann, Karsten
  • Nikkel, Karsten
  • Varfolomeyev, I.
  • Grimm, J.
  • Gugau, M.
  • Berger, Christina
  • Troßmann, Torsten
  • David, Patrick
  • Wagener, Rainer
  • Schram, Antonia
  • Rekersdrees, Tim
  • Palkowski, Heinz
  • Anke, Th
  • Schramm, Antonia
OrganizationsLocationPeople

document

Formed Thin Sheet Structures-Concepts for Fatigue Life Calculation

  • Hinkelmann, Karsten
  • Esderts, Alfons
  • Masendorf, Rainer
  • Medhurst, Tim
  • Nikkel, Karsten
Abstract

A fatigue life calculation of formed thin sheet metal structures is best undertaken using local concepts, as principle stresses can often not be defined. Currently linear finite element calculations are the most common method used to determine local loads. Only materials' Young's Modulus is required for the calculation. The calculated stresses are translated into fatigue life estimations using various methods. Non-linear finite element calculations are better suited to describing the local stress-strain states under alternating loads. Knowledge of the cyclic stress-strain curve of the utilised material is required for this procedure. Subsequently the local strain is assessed using the strain-life curve. Forming can have a substantial influence on the cyclic stress-strain curve and the strain-life curve. By running a preliminiary forming simulation, the local material thickness and the local state of forming can be estimated, without having to manufacture a prototype part. A comparison of linear and non-linear calculation concepts for a stiffening sheet for a MacPherson strut unit with experimental results shows that a linear calculation cannot describe the exact location of the highest loads if a constant material thickness and cyclic material data for the base matreial are used for the calculation basis. A non-linear finite element analysis with a preliminary forming simulation including the changes of local sheet thickness as well as the changes of the cyclic material data on the other hand predicts the location of crack initiation accurately. The comparison of the strain-life curves from experiments with those derived from linear and non-linear finite element calculations shows that the prediction accuracy of a fatigue life calculation can be substantially increased for formed sheet metal parts if the local changes of material thickness and cyclic material data due to the manufacturing process are taken into account.

Topics
  • impedance spectroscopy
  • experiment
  • simulation
  • crack
  • stress-strain curve
  • fatigue
  • forming
  • finite element analysis