Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Boorman, O.

  • Google
  • 2
  • 7
  • 7

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2014Dielectric studies of polystyrene-based, high-permittivity composite systems7citations
  • 2014Barium titanate and the dielectric response of polystyrene-based compositescitations

Places of action

Chart of shared publication
Andritsch, Thomas
2 / 70 shared
Swingler, S. G.
2 / 12 shared
Vaughan, Alun S.
2 / 70 shared
Praeger, Matthew
2 / 18 shared
Hosier, Ian L.
2 / 20 shared
Topham, J.
2 / 2 shared
Torah, Russel N.
2 / 16 shared
Chart of publication period
2014

Co-Authors (by relevance)

  • Andritsch, Thomas
  • Swingler, S. G.
  • Vaughan, Alun S.
  • Praeger, Matthew
  • Hosier, Ian L.
  • Topham, J.
  • Torah, Russel N.
OrganizationsLocationPeople

document

Barium titanate and the dielectric response of polystyrene-based composites

  • Andritsch, Thomas
  • Swingler, S. G.
  • Vaughan, Alun S.
  • Praeger, Matthew
  • Hosier, Ian L.
  • Topham, J.
  • Boorman, O.
  • Torah, Russel N.
Abstract

Barium titanate (BaTiO3) is characterized by real permittivity values as high as 10,000, depending upon structure. Consequently, in this work, this material was chosen to serve as a high permittivity filler for polystyrene (PS) based composites. In order to determine the influence of particle dimensions on the permittivity of the bulk material, the filler size was varied by means of ball milling, from the as-received microscopic filler size, to the mesoscopic and nanometric range. Filler size was measured by scanning electron microscopy (SEM). To explore the influence of fillgrade and particle size on the effective permittivity, a range of different composites was produced and subjected to dielectric spectroscopy. The results obtained were compared with effective medium theories. Since neither the Maxwell Garnet nor Bruggeman equations were able to reproduce the dependency of permittivity on composition seen experimentally, the Lichtenecker Rother equation was chosen and found to provide a good fit for the experimental data.

Topics
  • impedance spectroscopy
  • scanning electron microscopy
  • milling
  • composite
  • ball milling
  • ball milling
  • Barium