People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Deleruyelle, Damien
Institut National des Sciences Appliquées de Lyon
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (26/26 displayed)
- 2024Development of ferroelectric and antiferroelectric H1-xZrxO2-based capacitors for non-volatile memories and power supply applications
- 2024Serendipity in materials science: how a simple doping leads to novel and outstanding properties in simple dielectric HfO2 !
- 2024Stabilization of low dimensional ferroelectric HfZrO2 film
- 2023How ALD deposition analysis can help PVD deposition process!
- 2023How ALD deposition analysis can help PVD deposition process!
- 2023Engineering the nano and micro structures of sputtered HfZrO2 thin films
- 2023Engineering the nano and micro structures of sputtered HfZrO2 thin films
- 2023Interplay between Strain and Defects at the Interfaces of Ultra‐Thin Hf 0.5 Zr 0.5 O 2 ‐Based Ferroelectric Capacitorscitations
- 2023Interplay between Strain and Defects at the Interfaces of Ultra‐Thin Hf 0.5 Zr 0.5 O 2 ‐Based Ferroelectric Capacitorscitations
- 2023Interface engineering between HfZrO2 thin films and electrodes for enhanced ferroelectricity
- 2023Interface engineering between HfZrO2 thin films and electrodes for enhanced ferroelectricity
- 2022Fabrication process for sub-8 nm HfZrO2-based ferroelectric tunnel junctions with enhanced properties
- 2022Ferroelectricity Improvement in Ultra-Thin Hf0.5Zr0.5O2 Capacitors by the Insertion of a Ti Interfacial Layercitations
- 2022Ferroelectricity Improvement in Ultra-Thin Hf0.5Zr0.5O2 Capacitors by the Insertion of a Ti Interfacial Layercitations
- 2022A multiscale study of the structure, chemistry and ferroelectric properties of epitaxial sol-gel PbZr0.2Ti0.8O3 films for nanomechanical switching
- 2022A multiscale study of the structure, chemistry and ferroelectric properties of epitaxial sol-gel PbZr0.2Ti0.8O3 films for nanomechanical switching
- 2022How to play on the fabrication process of HfZrO2 ferroelectric thin film to enhance its physical properties
- 2021Electrical Characterisation of HfZrO2 Ferroelectric Tunnel Junctions for Neuromorphic Application
- 2021Bottom electrodes impact on Hf0.5Zr0.5O2 ferroelectric tunnel junctions
- 2021Bottom electrodes impact on Hf0.5Zr0.5O2 ferroelectric tunnel junctions
- 2021Effect of bottom electrodes on HZO thin film properties
- 2021Impact of a dielectric layer at TiN/HfZrO2 interface for ferroelectric tunnel junctions applications
- 2021Impact of a dielectric layer at TiN/HfZrO2 interface for ferroelectric tunnel junctions applications
- 2021Role of ultra-thin Ti and Al interfacial layers in HfZrO2 ferroelectric tunnel junctions
- 2021Role of ultra-thin Ti and Al interfacial layers in HfZrO2 ferroelectric tunnel junctions
- 2014Photo-Cross-Linked Diblock Copolymer Micelles: Quantitative Study of Photochemical Efficiency, Micelles Morphologies and their Thermal Behaviorcitations
Places of action
Organizations | Location | People |
---|
document
How to play on the fabrication process of HfZrO2 ferroelectric thin film to enhance its physical properties
Abstract
Various applications have been suggested for fluorite-structure ferroelectrics due to their advantages over the conventional perovskite-structure ferroelectrics [1]. We focus on (Hf,Zr)O2 (HZO) thin films deposition for the capacitor of Ferroelectric Random Access Memories (FRAM) in the 1Transitor-1Capacitor (1T-1C) model. (Hf,Zr)O2 thin films are studied to either fully understand the stabilization of the ferroelectric phase (f-phase) or to fit with industrial requirements. Changing the pressure in our sputtering chamber during the room temperature deposition lead to the deposition of crystalline or amorphous films at room temperature. After a Rapid Thermal Annealing (RTA), only the amorphous films crystallize in the f-phase. Samples are stacks of Si/TiN/Hf0.5Zr0.5O/TiN/Pt. The samples are called NM, and M: NM and M refers to two different architectures, respectively non-mesa and mesa structures. Fabrication and architecture details can be found in reference [2]. The set-up for electrical measurements have been described in reference [3]. We report the fabrication of two samples deposited by magnetron sputtering. Pr values are among the highest for samples deposited by sputtering. Although the N-sample and NM-samples show very close Pr values, the two samples show completely different electrical behaviors. During cycling, the increase of Pr value for the NM-sample is more than an order of magnitude higher than the M-sample. It is accompanied by a decrease of the endurance which is two order of magnitude higher for the NM-sample than for the M-sample. The origins of the different electrical behaviors come from the micro-crystalline structures of the two samples, according to GIXRD results. The crystallization takes place during the annealing step. During annealing, M-sample is built with a TiN TE fully covering the HZO layer whereas the TiN covers only partially the HZO layer in case of the NM-sample. It induces different stress states which lead to two different micro-crystalline patterning. The M-sample shows no monoclinic peak, whereas the NM-sample shows many monoclinic orientations. It can explain the huge reduction of the wake-up effect. A correlation between long-term retention properties and the wake-up effect is also established: the sample with a reduced wake-up effect has a higher extrapolated polarization value and a smaller retention loss after ten years [4]. [1] M.H. Park, et al. MRS Commun. 1 (2018). [2] J. Bouaziz, et al., ACS Appl. Electron. Mater. 1, 1740 (2019). [3] J. Bouaziz, et al., APL Mater. 7, 081109 (2019). [4] J. Bouaziz, et al., Appl. Phys. Lett. 118, 082901 (2021).