People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Goodson, Kenneth E.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2023High Thermal Conductivity of Submicrometer Aluminum Nitride Thin Films Sputter-Deposited at Low Temperature.citations
- 2023Energy Efficient Neuro-inspired Phase Change Memory Based on Ge4 Sb6 Te7 as a Novel Epitaxial Nanocomposite.citations
- 2018Tailoring Permeability of Microporous Copper Structures through Template Sintering.
- 2017Dense Vertically Aligned Copper Nanowire Composites as High Performance Thermal Interface Materials.
- 2012Electrical and Thermal Conduction in Atomic Layer Deposition Nanobridges Down to 7 nm Thicknesscitations
Places of action
Organizations | Location | People |
---|
article
Tailoring Permeability of Microporous Copper Structures through Template Sintering.
Abstract
Microporous metals are used extensively for applications that combine convective and conductive transport and benefit from low resistance to both modes of transport. Conventional fabrication methods, such as direct sintering of metallic particles, however, often produce structures with limited fluid transport properties due to the lack of control over pore morphologies such as the pore size and porosity. Here, we demonstrate control and improvement of hydraulic permeability of microporous copper structures fabricated using template-assisted electrodeposition. Template sintering is shown to modify the fluid transport network in a manner that increases permeability by nearly an order of magnitude with a less significant decrease (38%) in thermal conductivity. The measured permeabilities range from 4.8 * 10-14 to 1.3 * 10-12 m2 with 5 mum pores, with the peak value being roughly 5 times larger than the published values for sintered copper particles of comparable feature sizes. Analysis indicates that the enhancement of permeability is limited by constrictions, i.e., bottlenecks between connecting pores, whose dimensions are highly sensitive to the sintering conditions. We further show contrasting trends in permeability versus conductivity of the electrodeposited microporous copper and conventional sintered copper particles and suggest these differing trends to be the result of their inverse structural relationship.