People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Velay, Vincent Lionel Sébastien
IMT Mines Albi
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (29/29 displayed)
- 2021Engine Oil- Crankshaft Interaction Fem Modelling of an Air-Cooled Diesel Engine under Dynamic Severe Functioning Conditions
- 2021Initial microstructure influence on Ti-Al-Mo-V alloy’s superplastic deformation behavior and deformation mechanismscitations
- 2020Oxygen/nitrogen-assisted degradation of the mechanical behavior of titanium alloys exposed at elevated temperaturecitations
- 2020Role of grain size and crystallographic texture on tensile behavior induced by sliding mechanism in Ti-6Al-4V alloycitations
- 2020Influence of strain rate and temperature on the deformation mechanisms of a fine-grained Ti-6Al-4V alloycitations
- 2020Experimental study of the superplastic and hot deformation mechanisms of a Ti-6Al-2Sn-4Zr-2Mo Titanium Alloycitations
- 2019Enhancement of superplasticity of the Ti-6Al-4V alloy via ultrafine grained heterogeneous microstructural control and metastable microstructural control
- 2019An optimization of the local hall-petch relationship using slip trace analysis technique and scale transition rules: application in equiaxed ti-6al-4v titanium alloy
- 2018Superplastic Property of the Ti-6Al-4V Alloy with Ultrafine-Grained Heterogeneous Microstructurecitations
- 2018Characterization and modeling of forged Ti-6Al-4V Titanium alloy with microstructural considerations during quenching processcitations
- 2017Mesoscale modeling of dynamic recrystallization behavior, grain size evolution, dislocation density, processing map characteristic, and room temperature strength of Ti-6Al-4V alloy forged in the (α+β) regioncitations
- 2016Multi-scale surface modeling of the nonlinear mechanical behaviour of AISI H11 hot work tool steel
- 2016Behavior modelling and microstructural evolutions of Ti-6Al-4V alloy under hot forming conditionscitations
- 2016Multi-scale Modelling of the Surface Behaviour of AISI H11 Tool Steels
- 2016Superplastic forming optimization technique based on average strain rate controlling – Numerical simulation and experimental validation
- 2015Superplasticity of the Ultrafine-Grained Ti-6Al-4V Alloy with a Metastable α-Single Phase Microstructurecitations
- 2015Thermomechanical behaviour and microstructural evolution of high temperature forged Ti-6Al-4V during heat treatment quenching
- 2014Investigation of the mechanical behaviour of Ti-6Al-4V alloy under hot forming conditions: Experiment and modellingcitations
- 2014A numerical investigation on the heterogeneous and anisotropic mechanical behaviour of AISI H11 steel using various stress-strain formulations : a multi-scale approach
- 2012Experimental Study of the Deformation Mechanisms in Textured Alpha-titanium Alloy Sheets
- 2011Processes and equipment for superplastic forming of metalscitations
- 2010High Temperature Fatigue of SPF Die Ni-Cr-Fe Heat Resistant Nickel-Chromium Cast Steelscitations
- 2010Effect of the LCF loading cycle characteristics on the fatigue life of inconel 718 at high temperature
- 2009A microstructural and low-cycle fatigue investigation of weld-repaired heat-resistant cast steelscitations
- 2008Thermal behaviour modelling of superplastic forming toolscitations
- 2007Behaviour model identification based on inverse modeling and using Optical Full Field Measurements (OFFM): application on rubber and steel
- 2007Behaviour parameters identification of polymer membranes during bubble inflation processcitations
- 2003Modélisation du comportement cyclique et de la durée de vie d'aciers à outils martensitiques
- 2002Cyclic behaviour modelling of martensitic hot work tool steels
Places of action
Organizations | Location | People |
---|
conferencepaper
Behaviour model identification based on inverse modeling and using Optical Full Field Measurements (OFFM): application on rubber and steel
Abstract
Biaxial properties of materials (polymer or steel) used in many industrial processes are often difficult to measure. However, these properties are useful for the numerical simulations of plastic-processing operations like blow moulding or thermoforming for polymers and superplastic forming or single point incremental forming for steels. Today, Optical Full Field Measurements (OFFM) are promising tools for experimental analysis of materials. Indeed, they are able to provide a very large amount of data (displacement or strain) spatially distributed. In this paper, a mixed numerical and experimental investigation is proposed in order to identify multi-axial constitutive behaviour models. The procedure is applied on two different materials commonly used in forming processes: polymer (rubber in this first approach) and steel. Experimental tests are performed on various rubber and steel structural specimens (notched and open-hole plate samples) in order to generate heterogeneous displacement field. Two different behaviour models are considered. On the one hand, a Money-Rivlin hyperelastic law is investigated to describe the high levels of strain induced in tensile test performed on a rubber open-hole specimen. On the other hand, Ramberg-Osgood law allows to reproduce elasto-plastic behaviour of steel on a specimen that induces heterogeneous strain fields. Each parameter identification is based on a same Finite Element Model Updated (FEMU) procedure which consists in comparing results provided by the numerical simulation (ABAQUS (TM)) with full field measurements obtained by the DISC (Digital Image Stereo-Correlation) technique (Vic-3D (R)).