Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Wood, D. J.

  • Google
  • 2
  • 9
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2024Mechanical and suture-holding properties of a UV-cured atelocollagen membrane with varied crosslinked architecturecitations
  • 2008Processing and characterization of apatite-wollastonite porous scaffolds for bone tissue engineeringcitations

Places of action

Chart of shared publication
Tronci, G.
1 / 3 shared
Brooker, C.
1 / 1 shared
Whitehouse, L.
1 / 1 shared
Thomson, N. H.
1 / 1 shared
Zhang, R.
1 / 28 shared
Dalgarno, K. W.
1 / 2 shared
Genever, Paul
1 / 3 shared
Xiao, K.
1 / 1 shared
Dyson, J.
1 / 1 shared
Chart of publication period
2024
2008

Co-Authors (by relevance)

  • Tronci, G.
  • Brooker, C.
  • Whitehouse, L.
  • Thomson, N. H.
  • Zhang, R.
  • Dalgarno, K. W.
  • Genever, Paul
  • Xiao, K.
  • Dyson, J.
OrganizationsLocationPeople

article

Processing and characterization of apatite-wollastonite porous scaffolds for bone tissue engineering

  • Dalgarno, K. W.
  • Wood, D. J.
  • Genever, Paul
  • Xiao, K.
  • Dyson, J.
Abstract

<p>There is a clinical and socio-economic need to produce synthetic alternatives to autologous or allogenic bone grafts. Bioactive glasses and glass-ceramics offer great potential in this area. The aims of this study were to optimise production of apatite-wollastonite (A-W) glassceramic scaffolds produced by selective laser sintering, in terms of their physical and biological properties and to look at how human Mesenchymal Stem Cells (MSCs) responded to these 3-D scaffolds in vitro. An indirect selective laser sintering process successfully produced strong, porous scaffolds. Depending upon particle size(s) and infiltration of the porous structure, flexural strengths between 35 MPa and 100 MPa were obtained. Following static seeding of A-W scaffolds with MSCs, fluoresecent actin and nuclei staining, as observed by confocal microscopy, showed that these scaffolds supported the adherence of human MSCs at time periods of up to 21 days. As such these seeded scaffolds show great potential for use in bone regenerative medicine.</p>

Topics
  • porous
  • impedance spectroscopy
  • glass
  • glass
  • strength
  • flexural strength
  • ceramic
  • sintering
  • laser sintering
  • confocal microscopy